論文の概要: Secure Data Transmission over Insecure Radio Channel in Wireless of Things (WoT) Network
- arxiv url: http://arxiv.org/abs/2311.11864v1
- Date: Mon, 20 Nov 2023 16:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 15:51:52.173373
- Title: Secure Data Transmission over Insecure Radio Channel in Wireless of Things (WoT) Network
- Title(参考訳): 無線通信(WoT)ネットワークにおける安全でない無線回線上のセキュアデータ伝送
- Authors: Prokash Barman, Banani Saha,
- Abstract要約: より大きなキーを使用するPublic Key Cryptography (PKC)技術は、小さなリソース制約のあるWireless of Things (WoT)デバイスには適用できない。
一部のSKC(Symmetric Key Cryptosystems)は小型のキーを使用しており、小型のデバイスに組み込むことができる。
ノード数が103の大規模ネットワークでは、メモリ制約はシステムがそれを許さない。
- 参考スコア(独自算出の注目度): 1.864621482724548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Potential capacity of processors is enhancing rapidly which leads to the increase of computational ability of the adversary. As a result, the required key size for conventional encryption techniques is growing everyday for complex unbreakable security communication systems. The Public Key Cryptography (PKC) techniques which use larger keys cannot be fitted in tiny resource constrained Wireless of Things (WoT) devices. Some Symmetric Key Cryptosystems (SKC) use smaller keys, which can be fitted in the tiny devices. But in large networks where the number of nodes is in the order of 103, the memory constraint does not allow the system to do so. The existing secure data communication in insecure medium uses various conventional encryption methods like Public Key Cryptography (PKC) and Symmetric Key Cryptosystems (SKC). Generally, modern encryption methods need huge processing power, memory and time. Also in some cases, Key Pre-distribution System (KPS) is used among different communicating devices. With the growing need for larger key size in the conventional secure communication system, the existing resources in the communicating devices suffer from resource starvation. Hence, the need of a novel mechanism for secure communication is inevitable. But the existing secure communication mechanisms like PKC, SKC or KPS do not ensure elimination of resource starvation issue in tiny devices during communication. In these existing conventional mechanisms, the plain text is generally converted into cipher text with greater size than the plain text at the device level, which leads to resource starvation. At the time of transmission, the cipher text at the device end requires more bandwidth than the plain text which puts bandwidth overhead on the broadcast channel (BC).
- Abstract(参考訳): プロセッサの潜在能力は急速に向上しており、敵の計算能力が向上している。
その結果、複雑で破壊不能なセキュリティ通信システムでは、従来の暗号化技術に必要な鍵サイズが日々増大している。
より大きなキーを使用するPublic Key Cryptography (PKC)技術は、小さなリソース制約のあるWireless of Things (WoT)デバイスには適用できない。
一部のSKC(Symmetric Key Cryptosystems)は小型のキーを使用しており、小型のデバイスに組み込むことができる。
しかし、ノード数が103の大規模ネットワークでは、メモリ制約はシステムがそれを許さない。
安全でない媒体における既存のセキュアなデータ通信は、Public Key Cryptography (PKC) やSymmetric Key Cryptosystems (SKC) といった従来の暗号化手法を使用している。
一般に、現代の暗号化手法は膨大な処理能力、メモリ、時間を必要とする。
また、KPS(Key Pre-Distribution System)は異なる通信機器間で使用される場合もある。
従来のセキュア通信システムではキーサイズを大きくする必要性が高まっているため、通信機器の既存のリソースは、リソースの飢餓に悩まされている。
したがって、セキュアな通信のための新しいメカニズムの必要性は避けられない。
しかし、PKC、SKC、KPSのような既存のセキュアな通信メカニズムは、通信中に小さなデバイスでリソースの飢餓の問題を解消しない。
これらの従来のメカニズムでは、通常、平文はデバイスレベルでの平文よりも大きな大きさの暗号文に変換され、リソースの飢餓につながる。
送信時には、デバイスエンドの暗号テキストは、ブロードキャストチャネル(BC)に帯域オーバーヘッドを置くプレーンテキストよりも多くの帯域幅を必要とする。
関連論文リスト
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - Comparison of Encryption Algorithms for Wearable Devices in IoT Systems [0.0]
IoT(Internet of Things)の拡張により、スマートウォッチや医療モニターなどのウェアラブルデバイスを含む、コネクテッドデバイスの新時代がもたらされた。
ウェアラブルデバイスは革新的な機能を提供するだけでなく、大量の機密データを生成・送信する。
さまざまな暗号化アルゴリズムは、それぞれ独自のアドバンテージと制限を持ち、ウェアラブルIoTデバイスのさまざまなセキュリティと計算ニーズを満たすために利用することができる。
論文 参考訳(メタデータ) (2024-09-01T19:08:52Z) - Boosting Digital Safeguards: Blending Cryptography and Steganography [0.30783046172997025]
ステガノグラフィーは、他の媒体にデータを隠蔽することで、メッセージを見えないものにすることで、隠蔽通信を容易にする。
提案手法は、人工知能(AI)とディープラーニング(DL)の最新の進歩を、特にGAN(Generative Adversarial Networks)の適用を通じて活用する。
GANの応用により、ニューラルネットワーク固有の感度を利用してデータのわずかな変更を行う、スマートでセキュアなシステムが可能になる。
論文 参考訳(メタデータ) (2024-04-09T03:36:39Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
我々は、新しいハイブリッドユニバーサルネットワーク符号化暗号(NU-HUNCC)を導入する。
NU-HUNCCは,リンクのサブセットにアクセス可能な盗聴者に対して,個別に情報理論的に保護されていることを示す。
論文 参考訳(メタデータ) (2024-02-13T12:12:39Z) - Quantum Key Distribution for Critical Infrastructures: Towards Cyber
Physical Security for Hydropower and Dams [0.4166512373146748]
水力施設は、しばしば中央の遠隔操作室から遠隔で監視または制御される。
通信は、インターネットを使って施設の制御システムを遠隔操作したり、制御室から機械にネットワーク経由で制御コマンドを送信する。
コンテンツは公開鍵を使って暗号化され、復号化され、通信された情報を保護する。
対照的に、量子鍵分布(QKD)は計算問題に基づいておらず、従来の公開鍵暗号に代わるものである。
論文 参考訳(メタデータ) (2023-10-19T18:59:23Z) - Grain-128PLE: Generic Physical-Layer Encryption for IoT Networks [6.515605001492591]
Grain-128PLEはGrain-128AEAD v2ストリーム暗号から派生した軽量物理層暗号方式である。
Grain-128PLEの設計は、オリジナルのGrain-128AEAD v2ストリーム暗号のメインビルディングブロックの構造を維持している。
論文 参考訳(メタデータ) (2023-09-27T10:48:52Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
本稿では,多モデルプロンプトを用いたGAI支援型SemComシステムを提案する。
セキュリティ上の懸念に応えて、フレンドリーなジャマーによって支援される隠蔽通信の応用を紹介する。
論文 参考訳(メタデータ) (2023-09-05T23:24:56Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
CV-QSDCシステムの最初の実験実験を行い,その安全性について報告する。
この実現は、将来的な脅威のない量子大都市圏ネットワークへの道を歩み、既存の高度な波長分割多重化(WDM)システムと互換性がある。
論文 参考訳(メタデータ) (2023-06-25T19:23:42Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
コールドブート攻撃は、電源がシャットダウンされた直後に破損したランダムアクセスメモリを検査する。
本研究では,AES鍵に対する攻撃を適用するために,深誤り訂正符号手法の新たな暗号版とSATソルバ方式を併用する。
以上の結果から,本手法は攻撃方法の精度を極めて高いマージンで上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-06-09T07:57:01Z) - Measurement-device-independent QSDC protocol using Bell and GHZ states
on quantum simulator [0.0]
QSDC(Quantum Secure Direct Communication)プロトコルは、鍵、暗号化、暗号通信の必要性を排除する。
これは、秘密情報が量子通信チャネルを介して直接送信されるユニークな量子通信方式である。
本方式では,通信中の量子状態のすべての測定を第三者が行う計測デバイス非依存(MDI)プロトコルを利用する。
論文 参考訳(メタデータ) (2020-07-01T07:47:59Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。