Continual Learning: Applications and the Road Forward
- URL: http://arxiv.org/abs/2311.11908v3
- Date: Thu, 28 Mar 2024 13:16:50 GMT
- Title: Continual Learning: Applications and the Road Forward
- Authors: Eli Verwimp, Rahaf Aljundi, Shai Ben-David, Matthias Bethge, Andrea Cossu, Alexander Gepperth, Tyler L. Hayes, Eyke Hüllermeier, Christopher Kanan, Dhireesha Kudithipudi, Christoph H. Lampert, Martin Mundt, Razvan Pascanu, Adrian Popescu, Andreas S. Tolias, Joost van de Weijer, Bing Liu, Vincenzo Lomonaco, Tinne Tuytelaars, Gido M. van de Ven,
- Abstract summary: Continual learning aims to allow machine learning models to continuously learn on new data, by accumulating knowledge without forgetting what was learned in the past.
This work is the result of the many discussions the authors had at the Dagstuhl seminar on Deep Continual Learning, in March 2023.
- Score: 119.03464063873407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning is a subfield of machine learning, which aims to allow machine learning models to continuously learn on new data, by accumulating knowledge without forgetting what was learned in the past. In this work, we take a step back, and ask: "Why should one care about continual learning in the first place?". We set the stage by examining recent continual learning papers published at four major machine learning conferences, and show that memory-constrained settings dominate the field. Then, we discuss five open problems in machine learning, and even though they might seem unrelated to continual learning at first sight, we show that continual learning will inevitably be part of their solution. These problems are model editing, personalization and specialization, on-device learning, faster (re-)training and reinforcement learning. Finally, by comparing the desiderata from these unsolved problems and the current assumptions in continual learning, we highlight and discuss four future directions for continual learning research. We hope that this work offers an interesting perspective on the future of continual learning, while displaying its potential value and the paths we have to pursue in order to make it successful. This work is the result of the many discussions the authors had at the Dagstuhl seminar on Deep Continual Learning, in March 2023.
Related papers
- A Unified Framework for Continual Learning and Machine Unlearning [9.538733681436836]
Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately.
We introduce a novel framework that jointly tackles both tasks by leveraging controlled knowledge distillation.
Our approach enables efficient learning with minimal forgetting and effective targeted unlearning.
arXiv Detail & Related papers (2024-08-21T06:49:59Z) - Self-Supervised Learning for Videos: A Survey [70.37277191524755]
Self-supervised learning has shown promise in both image and video domains.
In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain.
arXiv Detail & Related papers (2022-06-18T00:26:52Z) - Memory Bounds for Continual Learning [13.734474418577188]
Continual learning, or lifelong learning, is a formidable current challenge to machine learning.
We make novel uses of communication complexity to establish that any continual learner, even an improper one, needs memory that grows linearly with $k$.
arXiv Detail & Related papers (2022-04-22T17:19:50Z) - Prospective Learning: Principled Extrapolation to the Future [45.287871145154135]
Learning evolve a process which can update decision rules based on past experience such that future performance improves.
Traditionally machine learning is often evaluated under the assumption that the future will be identical to the past in distribution or adversarial dynamics.
Here we reformulate the learning problem to one that centers around this idea of dynamic futures that are partially learnable.
We argue that prospective learning more accurately characterizes many real world problems that (1) currently lack adequate explanations for how natural intelligences solve them.
arXiv Detail & Related papers (2022-01-19T01:19:57Z) - Recent Advances of Continual Learning in Computer Vision: An Overview [16.451358332033532]
Continual learning is similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps.
We present a comprehensive review of the recent progress of continual learning in computer vision.
arXiv Detail & Related papers (2021-09-23T13:30:18Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z) - Continual Learning: Tackling Catastrophic Forgetting in Deep Neural
Networks with Replay Processes [0.0]
Continual algorithms are designed to accumulate and improve knowledge in a curriculum of learning-experiences without forgetting.
Generative Replay consists of regenerating past learning experiences with a generative model to remember them.
We show that they are very promising methods for continual learning.
arXiv Detail & Related papers (2020-07-01T13:44:33Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback.
We present a framework for curriculum learning (CL) in RL, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals.
arXiv Detail & Related papers (2020-03-10T20:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.