A Unified Framework for Continual Learning and Machine Unlearning
- URL: http://arxiv.org/abs/2408.11374v1
- Date: Wed, 21 Aug 2024 06:49:59 GMT
- Title: A Unified Framework for Continual Learning and Machine Unlearning
- Authors: Romit Chatterjee, Vikram Chundawat, Ayush Tarun, Ankur Mali, Murari Mandal,
- Abstract summary: Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately.
We introduce a novel framework that jointly tackles both tasks by leveraging controlled knowledge distillation.
Our approach enables efficient learning with minimal forgetting and effective targeted unlearning.
- Score: 9.538733681436836
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately. Continual learning focuses on adapting to new knowledge while preserving past information, whereas unlearning involves selectively forgetting specific subsets of data. In this paper, we introduce a novel framework that jointly tackles both tasks by leveraging controlled knowledge distillation. Our approach enables efficient learning with minimal forgetting and effective targeted unlearning. By incorporating a fixed memory buffer, the system supports learning new concepts while retaining prior knowledge. The distillation process is carefully managed to ensure a balance between acquiring new information and forgetting specific data as needed. Experimental results on benchmark datasets show that our method matches or exceeds the performance of existing approaches in both continual learning and machine unlearning. This unified framework is the first to address both challenges simultaneously, paving the way for adaptable models capable of dynamic learning and forgetting while maintaining strong overall performance.
Related papers
- Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Recall-Oriented Continual Learning with Generative Adversarial
Meta-Model [5.710971447109951]
We propose a recall-oriented continual learning framework to address the stability-plasticity dilemma.
Inspired by the human brain's ability to separate the mechanisms responsible for stability and plasticity, our framework consists of a two-level architecture.
We show that our framework not only effectively learns new knowledge without any disruption but also achieves high stability of previous knowledge.
arXiv Detail & Related papers (2024-03-05T16:08:59Z) - Informed Meta-Learning [55.2480439325792]
Meta-learning and informed ML stand out as two approaches for incorporating prior knowledge into ML pipelines.
We formalise a hybrid paradigm, informed meta-learning, facilitating the incorporation of priors from unstructured knowledge representations.
We demonstrate the potential benefits of informed meta-learning in improving data efficiency, robustness to observational noise and task distribution shifts.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - Federated Unlearning via Active Forgetting [24.060724751342047]
We propose a novel federated unlearning framework based on incremental learning.
Our framework differs from existing federated unlearning methods that rely on approximate retraining or data influence estimation.
arXiv Detail & Related papers (2023-07-07T03:07:26Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
We propose Experience Continual Replay (ERR), a bi-level learning framework to adaptively tune task-wise to achieve a better stability plasticity' tradeoff.
ERR can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T12:05:22Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
"Online" continual learning enables evaluating both information retention and online learning efficacy.
In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online.
We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts.
arXiv Detail & Related papers (2021-08-20T06:17:20Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.