論文の概要: LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning
- arxiv url: http://arxiv.org/abs/2311.12023v3
- Date: Sun, 30 Jun 2024 22:43:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 17:30:47.159914
- Title: LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning
- Title(参考訳): LQ-LoRA:効率的な言語モデルファインタニングのための低ランク・量子行列分解
- Authors: Han Guo, Philip Greengard, Eric P. Xing, Yoon Kim,
- Abstract要約: 提案手法では,事前学習した行列を高精度の低ランク成分とメモリ効率の量子化成分に分解するために反復アルゴリズムを用いる。
微調整されたRoBERTaとLLaMA-2の実験は、我々の低ランク+量子化行列分解法(LQ-LoRA)が強いQLoRAおよびGPTQ-LoRAベースラインより優れていることを示した。
- 参考スコア(独自算出の注目度): 66.85589263870702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a simple approach for memory-efficient adaptation of pretrained language models. Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component. During finetuning, the quantized component remains fixed and only the low-rank component is updated. We present an integer linear programming formulation of the quantization component which enables dynamic configuration of quantization parameters (e.g., bit-width, block size) for each matrix given an overall target memory budget. We further explore a data-aware version of the algorithm which uses an approximation of the Fisher information matrix to weight the reconstruction objective during matrix decomposition. Experiments on finetuning RoBERTa and LLaMA-2 (7B and 70B) demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines and enables aggressive quantization to sub-3 bits with only minor performance degradations. When finetuned on a language modeling calibration dataset, LQ-LoRA can also be used for model compression; in this setting our 2.75-bit LLaMA-2-70B model (which has 2.85 bits on average when including the low-rank components and requires 27GB of GPU memory) performs respectably compared to the 16-bit baseline.
- Abstract(参考訳): 本稿では,事前学習言語モデルのメモリ効率向上のための簡単な手法を提案する。
提案手法では,事前学習した行列を高精度の低ランク成分とメモリ効率の量子化成分に分解するために反復アルゴリズムを用いる。
微調整中、量子化コンポーネントは固定され、ローランクコンポーネントのみが更新される。
本稿では,各行列に対する量子化パラメータ(例えば,ビット幅,ブロックサイズ)の動的構成を可能にする量子化成分の整数線形計画法について述べる。
さらに、行列分解時の再構成目的を重み付けするために、フィッシャー情報行列の近似を用いたアルゴリズムのデータ認識バージョンについて検討する。
RoBERTa と LLaMA-2 (7B, 70B) の微調整実験により,我々の低ランク+量子化行列分解法 (LQ-LoRA) が強い QLoRA と GPTQ-LoRA ベースラインを上回り,性能劣化の少ない sub-3 ビットへのアグレッシブ量子化を可能にすることを示した。
この設定では、2.75ビットのLLaMA-2-70Bモデル(低ランクのコンポーネントを含めると平均2.85ビットで、27GBのGPUメモリを必要とする)は16ビットのベースラインと比較してきちんと動作します。
関連論文リスト
- From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients [86.40635601953446]
現代大規模言語モデルの様々な層にまたがる低ランク構造の出現について検討する。
WeLore(Weight Low-Rank Projection)を提案する。
論文 参考訳(メタデータ) (2024-07-15T21:05:20Z) - Bayesian-LoRA: LoRA based Parameter Efficient Fine-Tuning using Optimal Quantization levels and Rank Values trough Differentiable Bayesian Gates [21.811889512977924]
自然言語処理では、単一のモデルを事前訓練し、下流のタスクのために微調整するのが一般的である。
B-LoRAは、特定の下流タスクで事前訓練されたモデルを微調整することができ、ローランク行列ごとに最適なランク値と量子化レベルを求めることができる。
B-LoRAはベースラインと同等かそれ以上で動作し、ビット操作の総数を約70%削減する。
論文 参考訳(メタデータ) (2024-06-18T20:26:30Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - ReALLM: A general framework for LLM compression and fine-tuning [11.738510106847414]
ReALLMは、事前訓練された言語モデルの圧縮とメモリ効率の適応のための新しいアプローチである。
重みのみの量子化アルゴリズムは、トレーニングなしで3ドルビットの予算で言語生成タスク(C4とWikiText-2)の最良の結果を得る。
論文 参考訳(メタデータ) (2024-05-21T18:50:51Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - OneBit: Towards Extremely Low-bit Large Language Models [66.29839811207617]
本稿では, LLMの重量行列を1ビットに大胆に定量化し, LLMの極低ビット幅展開への道を開く。
実験によると、OneBitは(LLaMAモデルの非量子化性能の少なくとも81%)優れたパフォーマンスを、堅牢なトレーニングプロセスで達成している。
論文 参考訳(メタデータ) (2024-02-17T14:26:57Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - ModuLoRA: Finetuning 2-Bit LLMs on Consumer GPUs by Integrating with
Modular Quantizers [38.16040503271727]
大規模言語モデル(LLM)のためのメモリ効率の高い微調整アルゴリズムを提案する。
lploraは、テキスト分類、自然言語推論、タスクに続く命令に対する競合性能を、既存のアプローチよりもはるかに少ないメモリで実現している。
私たちはまた、一般的な要約タスクにおいて最先端のROUGEスコアを超えます。
論文 参考訳(メタデータ) (2023-09-28T02:55:01Z) - Weighted Low Rank Matrix Approximation and Acceleration [0.5177947445379687]
低ランク行列近似は機械学習における中心的な概念の1つである。
低ランク行列補完(LRMC)は、いくつかの観測が欠落しているときにLRMA問題を解く。
重み付き問題を解くアルゴリズムと2つの加速手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T22:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。