Fast Controllable Diffusion Models for Undersampled MRI Reconstruction
- URL: http://arxiv.org/abs/2311.12078v3
- Date: Tue, 11 Jun 2024 10:15:53 GMT
- Title: Fast Controllable Diffusion Models for Undersampled MRI Reconstruction
- Authors: Wei Jiang, Zhuang Xiong, Feng Liu, Nan Ye, Hongfu Sun,
- Abstract summary: This study introduces a new algorithm called Predictor-Projector-Noisor (PPN), which enhances controllable generation of diffusion models for undersampled MRI reconstruction.
Our results demonstrate that PPN produces high-fidelity MR images that conform to undersampled k-space measurements with significantly shorter reconstruction time than other controllable sampling methods.
- Score: 9.257507373275288
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Supervised deep learning methods have shown promise in undersampled Magnetic Resonance Imaging (MRI) reconstruction, but their requirement for paired data limits their generalizability to the diverse MRI acquisition parameters. Recently, unsupervised controllable generative diffusion models have been applied to undersampled MRI reconstruction, without paired data or model retraining for different MRI acquisitions. However, diffusion models are generally slow in sampling and state-of-the-art acceleration techniques can lead to sub-optimal results when directly applied to the controllable generation process. This study introduces a new algorithm called Predictor-Projector-Noisor (PPN), which enhances and accelerates controllable generation of diffusion models for undersampled MRI reconstruction. Our results demonstrate that PPN produces high-fidelity MR images that conform to undersampled k-space measurements with significantly shorter reconstruction time than other controllable sampling methods. In addition, the unsupervised PPN accelerated diffusion models are adaptable to different MRI acquisition parameters, making them more practical for clinical use than supervised learning techniques.
Related papers
- LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
A Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method is proposed.
A sketcher module is utilized to provide appropriate control and balance the quality and fidelity of the reconstructed MR images.
A VAE adapted for MRI tasks (MR-VAE) is explored, which can serve as the backbone for future MR-related tasks.
arXiv Detail & Related papers (2024-11-05T09:51:59Z) - Improved Patch Denoising Diffusion Probabilistic Models for Magnetic Resonance Fingerprinting [7.379135816468852]
Magnetic Resonance Fingerprinting (MRF) is a time-efficient approach to quantitative MRI.
achieving accurate reconstructions remains challenging, particularly in highly accelerated and undersampled acquisitions.
We propose for the first time a conditional diffusion probabilistic model for MRF image reconstruction.
arXiv Detail & Related papers (2024-10-29T21:38:54Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - K-space Cold Diffusion: Learning to Reconstruct Accelerated MRI without
Noise [2.982793366290863]
We propose a k-space cold diffusion model that performs image degradation and restoration in k-space without the need for Gaussian noise.
Our results show that this novel way of performing degradation can generate high-quality reconstruction images for accelerated MRI.
arXiv Detail & Related papers (2023-11-16T19:34:18Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - K-space and Image Domain Collaborative Energy based Model for Parallel
MRI Reconstruction [21.317550364310343]
Decreasing magnetic resonance (MR) image acquisition times can potentially make MR examinations more accessible.
We propose a k-space and image domain collaborative generative model to comprehensively estimate the MR data from under-sampled measurement.
Experimental comparisons with the state-of-the-arts demonstrated that the proposed hybrid method has less error in reconstruction and is more stable under different acceleration factors.
arXiv Detail & Related papers (2022-03-21T07:38:59Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
We propose an iterative framework to optimize the under-sampling pattern for MRI acquisition of another modality.
We have demonstrated superior performance of our learned under-sampling patterns on a public dataset.
arXiv Detail & Related papers (2021-11-11T04:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.