論文の概要: Human Learning by Model Feedback: The Dynamics of Iterative Prompting
with Midjourney
- arxiv url: http://arxiv.org/abs/2311.12131v1
- Date: Mon, 20 Nov 2023 19:28:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 03:09:15.645581
- Title: Human Learning by Model Feedback: The Dynamics of Iterative Prompting
with Midjourney
- Title(参考訳): モデルフィードバックによるヒューマンラーニング:ミッドジャーニーによる反復的プロンプティングのダイナミクス
- Authors: Shachar Don-Yehiya and Leshem Choshen and Omri Abend
- Abstract要約: 本稿では,そのようなイテレーションに沿ってユーザプロンプトのダイナミクスを解析する。
これらのイテレーションに沿った特定の特性に対して、プロンプトが予測通りに収束することを示します。
ユーザがモデルの好みに適応する可能性は、さらなるトレーニングのためにユーザデータの再利用に関する懸念を提起する。
- 参考スコア(独自算出の注目度): 28.39697076030535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating images with a Text-to-Image model often requires multiple trials,
where human users iteratively update their prompt based on feedback, namely the
output image. Taking inspiration from cognitive work on reference games and
dialogue alignment, this paper analyzes the dynamics of the user prompts along
such iterations. We compile a dataset of iterative interactions of human users
with Midjourney. Our analysis then reveals that prompts predictably converge
toward specific traits along these iterations. We further study whether this
convergence is due to human users, realizing they missed important details, or
due to adaptation to the model's ``preferences'', producing better images for a
specific language style. We show initial evidence that both possibilities are
at play. The possibility that users adapt to the model's preference raises
concerns about reusing user data for further training. The prompts may be
biased towards the preferences of a specific model, rather than align with
human intentions and natural manner of expression.
- Abstract(参考訳): テキスト・ツー・イメージ・モデルで画像を生成するには、しばしば複数の試行が必要であり、人間のユーザーはフィードバック、すなわち出力画像に基づいてプロンプトを反復的に更新する。
本稿では,参照ゲームと対話アライメントに関する認知作業からインスピレーションを得て,ユーザプロンプトのダイナミクスを分析した。
ユーザとmidjourneyの反復的なインタラクションのデータセットをコンパイルする。
分析の結果、これらのイテレーションに沿って特定の特性に対して予測的に収束するプロンプトが明らかになった。
さらに,この収束が人間ユーザによるものか,重要な詳細を見逃しているか,モデルの ‘preferences'' への適応によるものか,あるいは特定の言語スタイルに適した画像を生成するのかについても検討した。
両方の可能性があり得るという最初の証拠を示します。
ユーザがモデルの好みに適応する可能性は、さらなるトレーニングのためにユーザデータの再利用に関する懸念を引き起こす。
プロンプトは、人間の意図や自然な表現方法と一致するのではなく、特定のモデルの好みに偏ることがある。
関連論文リスト
- Learning from Naturally Occurring Feedback [25.266461597402056]
チャットモデルと対話する際にユーザが自然に含むフィードバックを抽出するスケーラブルな方法を提案する。
我々は,自然に発生するフィードバックの存在を確認するために,会話データを手動でアノテートした。
100万件以上の会話に本手法を適用し,数十万件のフィードバックサンプルを得た。
論文 参考訳(メタデータ) (2024-07-15T17:41:34Z) - Personalized Language Modeling from Personalized Human Feedback [49.344833339240566]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、人間の好みに合わせて大きな言語モデルを微調整するために一般的に用いられる。
本研究では,パーソナライズされた言語モデルを構築する手法を開発することにより,この問題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-02-06T04:18:58Z) - Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural
Language Generation [68.9440575276396]
この調査は、人間のフィードバックを利用して自然言語生成を改善した最近の研究の概要を提供することを目的としている。
まず、フィードバックの形式化を包括的に導入し、この形式化に続いて既存の分類学研究を特定・整理する。
第二に、フィードバックを形式や目的によってどのように記述するかを議論し、フィードバック(トレーニングやデコード)を直接使用したり、フィードバックモデルをトレーニングしたりするための2つのアプローチについて取り上げる。
第3に、AIフィードバックの生まれたばかりの分野の概要を紹介します。これは、大きな言語モデルを利用して、一連の原則に基づいて判断し、必要最小限にします。
論文 参考訳(メタデータ) (2023-05-01T17:36:06Z) - Aligning Text-to-Image Models using Human Feedback [104.76638092169604]
現在のテキスト・ツー・イメージモデルは、しばしばテキスト・プロンプトと不適切に一致した画像を生成する。
そこで本研究では,人間のフィードバックを用いて,そのようなモデルを調整するための微調整手法を提案する。
その結果,人間のフィードバックから学び,テキスト・ツー・イメージ・モデルを大幅に改善する可能性が示された。
論文 参考訳(メタデータ) (2023-02-23T17:34:53Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - DASH: Visual Analytics for Debiasing Image Classification via
User-Driven Synthetic Data Augmentation [27.780618650580923]
画像分類モデルは、訓練データにおいて、入力特徴と出力クラスとの間の無関係な共起に基づいてクラスを予測することをしばしば学習する。
我々は、望ましくない相関を「データバイアス」と呼び、データバイアスを引き起こす視覚的特徴を「バイアス要因」と呼んでいる。
人間の介入なしにバイアスを自動的に識別し緩和することは困難である。
論文 参考訳(メタデータ) (2022-09-14T00:44:41Z) - Towards Building a Personalized Dialogue Generator via Implicit User
Persona Detection [0.0]
高品質なトランスミッションは基本的に、相手のペルソナを反映して構築されていると考えています。
そこで本研究では,暗黙のユーザペルソナを検知する対話生成手法を提案する。
論文 参考訳(メタデータ) (2022-04-15T08:12:10Z) - Dialogue Response Ranking Training with Large-Scale Human Feedback Data [52.12342165926226]
ソーシャルメディアのフィードバックデータを利用して、フィードバック予測のための大規模なトレーニングデータセットを構築します。
我々は,1300万対の人間のフィードバックデータに基づくGPT-2モデルであるDialogRPTを訓練した。
我々のランキングは、Redditのフィードバックを予測する上で、従来のダイアログの難易度ベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-15T10:50:05Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。