論文の概要: Classifier Calibration with ROC-Regularized Isotonic Regression
- arxiv url: http://arxiv.org/abs/2311.12436v1
- Date: Tue, 21 Nov 2023 08:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 01:31:06.611119
- Title: Classifier Calibration with ROC-Regularized Isotonic Regression
- Title(参考訳): ROC-regularized isotonic Regression を用いた分類器の校正
- Authors: Eugene Berta (SIERRA), Francis Bach (SIERRA), Michael Jordan (SIERRA)
- Abstract要約: 等方性回帰を用いてモノトン変換による校正集合上のクロスエントロピーを最小化する。
IRは適応的なバイナリ処理として機能し、キャリブレーション誤差をゼロにすることができるが、性能への影響は未解決である。
この一般単調な基準は、クロスエントロピー損失の低減と校正セットの過度な適合の回避のバランスを打つのに有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calibration of machine learning classifiers is necessary to obtain reliable
and interpretable predictions, bridging the gap between model confidence and
actual probabilities. One prominent technique, isotonic regression (IR), aims
at calibrating binary classifiers by minimizing the cross entropy on a
calibration set via monotone transformations. IR acts as an adaptive binning
procedure, which allows achieving a calibration error of zero, but leaves open
the issue of the effect on performance. In this paper, we first prove that IR
preserves the convex hull of the ROC curve -- an essential performance metric
for binary classifiers. This ensures that a classifier is calibrated while
controlling for overfitting of the calibration set. We then present a novel
generalization of isotonic regression to accommodate classifiers with K
classes. Our method constructs a multidimensional adaptive binning scheme on
the probability simplex, again achieving a multi-class calibration error equal
to zero. We regularize this algorithm by imposing a form of monotony that
preserves the K-dimensional ROC surface of the classifier. We show empirically
that this general monotony criterion is effective in striking a balance between
reducing cross entropy loss and avoiding overfitting of the calibration set.
- Abstract(参考訳): 機械学習分類器の校正は、モデルの信頼性と実際の確率のギャップを埋め、信頼性と解釈可能な予測を得るために必要である。
アイソトニック回帰(IR)は、モノトン変換による校正セット上のクロスエントロピーを最小化することでバイナリ分類器の校正を目的としている。
IRは適応的なバイナリ処理として機能し、キャリブレーション誤差をゼロにすることができるが、性能への影響は未解決である。
本稿では、IRがROC曲線の凸殻を保存することを最初に証明する。
これにより、校正セットのオーバーフィットを制御しながら、分類器が校正される。
次に, 等張回帰の新たな一般化を行い, k クラスを持つクラス化子に対応する。
提案手法は, 確率単純度に基づく多次元適応型ビンニング方式を構築し, 再びゼロに等しいマルチクラスキャリブレーション誤差を実現する。
このアルゴリズムは、分類器のk次元のroc曲面を保存する単調な形式を課すことで正則化する。
この一般単調な基準は、クロスエントロピー損失の低減と校正セットの過度な適合の回避のバランスを打つのに有効であることを示す。
関連論文リスト
- Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
ディープニューラルネットワークの現実的な応用は、ノイズの多い入力や敵攻撃に直面した場合、その不安定な予測によって妨げられる。
入力にノイズ注入を頼りに、認証された半径を持つ効率的な分類器を設計する方法を示す。
新たな認証手法により、ランダムな平滑化による事前学習モデルの使用が可能となり、ゼロショット方式で現在の認証半径を効果的に改善できる。
論文 参考訳(メタデータ) (2023-09-28T22:41:47Z) - Model Calibration in Dense Classification with Adaptive Label
Perturbation [44.62722402349157]
既存の密接な二分分類モデルは、過信される傾向がある。
本稿では,各トレーニング画像に対する独自のラベル摂動レベルを学習する適応ラベル摂動(ASLP)を提案する。
ASLPは、分布内および分布外の両方のデータに基づいて、密度の高い二分分類モデルの校正度を著しく改善することができる。
論文 参考訳(メタデータ) (2023-07-25T14:40:11Z) - Minimum-Risk Recalibration of Classifiers [9.31067660373791]
平均二乗誤差分解の枠組みにおいて,最小リスク再校正の概念を導入する。
校正分類器の転送には,スクラッチから再校正するのに比べて,ターゲットサンプルが著しく少ないことが示されている。
論文 参考訳(メタデータ) (2023-05-18T11:27:02Z) - A Consistent and Differentiable Lp Canonical Calibration Error Estimator [21.67616079217758]
ディープニューラルネットワークは校正が不十分で、自信過剰な予測を出力する傾向がある。
ディリクレ核密度推定に基づく低バイアス・トレーニング可能な校正誤差推定器を提案する。
提案手法はカーネルの自然な選択であり,他の量の一貫した推定値を生成するのに利用できる。
論文 参考訳(メタデータ) (2022-10-13T15:11:11Z) - Class-wise and reduced calibration methods [0.0]
キャリブレーションの削減により、元の問題をより単純なものに変換する方法を示す。
第2に,ニューラル崩壊という現象に基づいて,クラスワイドキャリブレーション手法を提案する。
この2つの手法を併用すると、予測とクラスごとの校正誤差を低減する強力なツールであるクラス単位での校正アルゴリズムが実現される。
論文 参考訳(メタデータ) (2022-10-07T17:13:17Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
完全大域キャリブレーションと完全個別化キャリブレーションのギャップにまたがる細粒度キャリブレーション指標を提案する。
次に,局所再校正法であるLoReを導入し,既存の校正法よりもLCEを改善する。
論文 参考訳(メタデータ) (2021-02-22T07:22:12Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。