論文の概要: Learning Site-specific Styles for Multi-institutional Unsupervised
Cross-modality Domain Adaptation
- arxiv url: http://arxiv.org/abs/2311.12437v1
- Date: Tue, 21 Nov 2023 08:47:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 01:31:18.786702
- Title: Learning Site-specific Styles for Multi-institutional Unsupervised
Cross-modality Domain Adaptation
- Title(参考訳): 多施設間クロスモダリティドメイン適応のためのサイト固有スタイルの学習
- Authors: Han Liu, Yubo Fan, Zhoubing Xu, Benoit M. Dawant, Ipek Oguz
- Abstract要約: 我々は,クロスモダ2023チャレンジに対する多施設非教師付きドメイン適応に取り組むためのソリューションを提案する。
私たちのソリューションは,課題の検証とテストの両段階において,第1位を獲得しました。
- 参考スコア(独自算出の注目度): 7.282377515210211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised cross-modality domain adaptation is a challenging task in
medical image analysis, and it becomes more challenging when source and target
domain data are collected from multiple institutions. In this paper, we present
our solution to tackle the multi-institutional unsupervised domain adaptation
for the crossMoDA 2023 challenge. First, we perform unpaired image translation
to translate the source domain images to the target domain, where we design a
dynamic network to generate synthetic target domain images with controllable,
site-specific styles. Afterwards, we train a segmentation model using the
synthetic images and further reduce the domain gap by self-training. Our
solution achieved the 1st place during both the validation and testing phases
of the challenge.
- Abstract(参考訳): 教師なしクロスモダリティドメイン適応は,医療画像解析において困難な課題であり,複数の機関からソースおよびターゲットドメインデータを収集する場合,さらに困難になる。
本稿では,クロスモダ2023チャレンジに対する多施設非教師付きドメイン適応への取り組みについて述べる。
まず,ソース領域の画像を対象領域に翻訳するために,非ペア画像変換を行い,制御可能なサイト固有のスタイルで合成対象領域画像を生成する動的ネットワークを設計する。
その後,合成画像を用いてセグメンテーションモデルを訓練し,自己学習による領域ギャップの低減を図る。
私たちのソリューションは,課題の検証とテストの両段階において,第1位を獲得しました。
関連論文リスト
- Adaptive Feature Fusion Neural Network for Glaucoma Segmentation on Unseen Fundus Images [13.03504366061946]
本研究では,未確認領域における緑内障セグメンテーションのための適応的特徴融合ニューラルネットワーク (AFNN) を提案する。
ドメインアダプタは、事前訓練されたモデルが、他の画像ドメインから医療基礎画像ドメインへの迅速な適応を支援する。
提案手法は,4つの公共緑内障データセット上の既存のファンドスセグメンテーション法と比較して,競争力のある性能を実現する。
論文 参考訳(メタデータ) (2024-04-02T16:30:12Z) - Domain-Controlled Prompt Learning [49.45309818782329]
既存の素早い学習方法はドメイン認識やドメイン転送機構を欠いていることが多い。
特定のドメインに対するtextbfDomain-Controlled Prompt Learningを提案する。
本手法は,特定の領域画像認識データセットにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-30T02:59:49Z) - Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
臨床応用においては、トレーニング画像(ソース領域)とテスト画像(ターゲット領域)が異なる分布下にある場合、ドメインシフトは一般的な問題である。
本稿では,Few-Shot Unsupervised Domain Adaptation (FSUDA) の新たな手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T16:02:01Z) - DynaGAN: Dynamic Few-shot Adaptation of GANs to Multiple Domains [26.95350186287616]
複数のドメインへのドメイン適応は、いくつかのトレーニングイメージから複数のドメインにまたがる複雑なイメージ分布を学習することを目的としている。
複数のターゲットドメインに対する新規な数ショットドメイン適応法であるDynaGANを提案する。
論文 参考訳(メタデータ) (2022-11-26T12:46:40Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
ソースフリー領域適応画像分割のための2段階のアプローチを提案する。
我々は,高エントロピー領域を抑えつつ,ターゲット固有の擬似ラベルを生成することに注力する。
第2段階では、タスク固有の表現にネットワークを適用することに重点を置いている。
論文 参考訳(メタデータ) (2022-03-29T17:50:22Z) - Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel
Segmentation via Disentangling Representation Style Transfer and
Collaborative Consistency Learning [3.9562534927482704]
ドメインシフトが大きいタスクに対する、新しいクロスモーダルな教師なしドメイン適応フレームワークDCDAを提案する。
本フレームワークは,OCTAからOCT,OCTからOCTAまで,目標に訓練されたオラクルに近いDiceスコアを達成し,他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2022-01-13T07:03:16Z) - Discover, Hallucinate, and Adapt: Open Compound Domain Adaptation for
Semantic Segmentation [91.30558794056056]
意味的セグメンテーションのための教師なしドメイン適応(UDA)が近年注目を集めている。
我々は,発見,幻覚,適応の3つの主要な設計原則に基づく新しいフレームワークを提案する。
我々は、標準ベンチマークGTAからC自動運転へのソリューションの評価を行い、新しい最先端の結果を得た。
論文 参考訳(メタデータ) (2021-10-08T13:20:09Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
セグメンテーションのための教師なしドメイン適応(UDA)は、ラベル付きソースドメインで訓練されたセグメンテーションモデルをラベル付きターゲットドメインに適応させることを目的としている。
既存の手法では、大きなドメインギャップに悩まされながら、ドメイン不変の特徴を学習しようとする。
本稿では,新しいDual Soft-Paste (DSP)法を提案する。
論文 参考訳(メタデータ) (2021-07-20T16:22:40Z) - Self-Supervised Learning of Domain Invariant Features for Depth
Estimation [35.74969527929284]
単一画像深度推定のための教師なし合成-現実的領域適応の課題に対処する。
単一画像深度推定の重要なビルディングブロックはエンコーダ・デコーダ・タスク・ネットワークであり、RGB画像を入力とし、出力として深度マップを生成する。
本稿では,タスクネットワークにドメイン不変表現を自己教師型で学習させる新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-06-04T16:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。