Knowledge Base Enabled Semantic Communication: A Generative Perspective
- URL: http://arxiv.org/abs/2311.12443v2
- Date: Sun, 16 Jun 2024 13:35:45 GMT
- Title: Knowledge Base Enabled Semantic Communication: A Generative Perspective
- Authors: Jinke Ren, Zezhong Zhang, Jie Xu, Guanying Chen, Yaping Sun, Ping Zhang, Shuguang Cui,
- Abstract summary: This article takes a crack at exploiting semantic knowledge base (KB) to usher in a new era of generative semantic communication.
Via semantic KB, source messages can be characterized in low-dimensional subspaces without compromising their desired meanings.
- Score: 47.49283348253937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic communication is widely touted as a key technology for propelling the sixth-generation (6G) wireless networks. However, providing effective semantic representation is quite challenging in practice. To address this issue, this article takes a crack at exploiting semantic knowledge base (KB) to usher in a new era of generative semantic communication. Via semantic KB, source messages can be characterized in low-dimensional subspaces without compromising their desired meanings, thus significantly enhancing the communication efficiency. The fundamental principle of semantic KB is first introduced, and a generative semantic communication architecture is developed by presenting three sub-KBs, namely source, task, and channel KBs. Then, the detailed construction approaches for each sub-KB are described, followed by their utilization in terms of semantic coding and transmission. A case study is also provided to showcase the superiority of generative semantic communication over conventional syntactic communication and classical semantic communication. In a nutshell, this article establishes a scientific foundation for the exciting uncharted frontier of generative semantic communication.
Related papers
- Generative Semantic Communication for Text-to-Speech Synthesis [39.8799066368712]
This paper develops a novel generative semantic communication framework for text-to-speech synthesis.
We employ a transformer encoder and a diffusion model to achieve efficient semantic coding without introducing significant communication overhead.
arXiv Detail & Related papers (2024-10-04T14:18:31Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
A pragmatic semantic communication framework is proposed in this paper.
It enables effective goal-oriented information sharing between two-intelligent agents.
Numerical evaluations demonstrate the framework's ability to achieve efficient communication with a reduced amount of bits.
arXiv Detail & Related papers (2023-11-30T03:36:19Z) - Language-Oriented Communication with Semantic Coding and Knowledge
Distillation for Text-to-Image Generation [53.97155730116369]
We put forward a novel framework of language-oriented semantic communication (LSC)
In LSC, machines communicate using human language messages that can be interpreted and manipulated via natural language processing (NLP) techniques for SC efficiency.
We introduce three innovative algorithms: 1) semantic source coding (SSC), which compresses a text prompt into its key head words capturing the prompt's syntactic essence; 2) semantic channel coding ( SCC), that improves robustness against errors by substituting head words with their lenghthier synonyms; and 3) semantic knowledge distillation (SKD), that produces listener-customized prompts via in-context learning the listener's
arXiv Detail & Related papers (2023-09-20T08:19:05Z) - Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware
Communication Framework [124.6509194665514]
A novel implicit semantic-aware communication (iSAC) architecture is proposed for representing, communicating, and interpreting the implicit semantic meaning between source and destination users.
A projection-based semantic encoder is proposed to convert the high-dimensional graphical representation of explicit semantics into a low-dimensional semantic constellation space for efficient physical channel transmission.
A generative adversarial imitation learning-based solution, called G-RML, is proposed to enable the destination user to learn and imitate the implicit semantic reasoning process of source user.
arXiv Detail & Related papers (2023-06-20T01:32:27Z) - Knowledge Enhanced Semantic Communication Receiver [7.171974845607281]
We propose a knowledge enhanced semantic communication framework in which the receiver can more actively utilize the facts in the knowledge base for semantic reasoning and decoding.
Specifically, we design a transformer-based knowledge extractor to find relevant factual triples for the received noisy signal.
Extensive simulation results on the WebNLG dataset demonstrate that the proposed receiver yields superior performance on top of the knowledge graph enhanced decoding.
arXiv Detail & Related papers (2023-02-13T01:49:51Z) - Less Data, More Knowledge: Building Next Generation Semantic
Communication Networks [180.82142885410238]
We present the first rigorous vision of a scalable end-to-end semantic communication network.
We first discuss how the design of semantic communication networks requires a move from data-driven networks towards knowledge-driven ones.
By using semantic representation and languages, we show that the traditional transmitter and receiver now become a teacher and apprentice.
arXiv Detail & Related papers (2022-11-25T19:03:25Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
Despite its promising potential, semantic communications and semantic-aware networking are still at their infancy.
We propose a novel reasoning-based implicit semantic-aware communication network architecture that allows multiple tiers of CDC and edge servers to collaborate.
We introduce a new multi-layer representation of semantic information taking into consideration both the hierarchical structure of implicit semantics as well as the personalized inference preference of individual users.
arXiv Detail & Related papers (2022-10-28T13:26:08Z) - Communication Beyond Transmitting Bits: Semantics-Guided Source and
Channel Coding [7.080957878208516]
"Semantic communications" offers promising research direction.
Injecting semantic guidance into the coded transmission design to achieve semantics-aware communications shows great potential for breakthrough in effectiveness and reliability.
This article sheds light on semantics-guided source and channel coding as a transmission paradigm of semantic communications.
arXiv Detail & Related papers (2022-08-04T06:12:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.