Machine-Guided Discovery of a Real-World Rogue Wave Model
- URL: http://arxiv.org/abs/2311.12579v1
- Date: Tue, 21 Nov 2023 12:50:24 GMT
- Title: Machine-Guided Discovery of a Real-World Rogue Wave Model
- Authors: Dion H\"afner, Johannes Gemmrich, Markus Jochum
- Abstract summary: We present a case study on discovering a new symbolic model for oceanic rogue waves from data using causal analysis, deep learning, parsimony-guided model selection, and symbolic regression.
We apply symbolic regression to distill this black-box model into a mathematical equation that retains the neural network's predictive capabilities.
This showcases how machine learning can facilitate inductive scientific discovery, and paves the way for more accurate rogue wave forecasting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Big data and large-scale machine learning have had a profound impact on
science and engineering, particularly in fields focused on forecasting and
prediction. Yet, it is still not clear how we can use the superior pattern
matching abilities of machine learning models for scientific discovery. This is
because the goals of machine learning and science are generally not aligned. In
addition to being accurate, scientific theories must also be causally
consistent with the underlying physical process and allow for human analysis,
reasoning, and manipulation to advance the field. In this paper, we present a
case study on discovering a new symbolic model for oceanic rogue waves from
data using causal analysis, deep learning, parsimony-guided model selection,
and symbolic regression. We train an artificial neural network on causal
features from an extensive dataset of observations from wave buoys, while
selecting for predictive performance and causal invariance. We apply symbolic
regression to distill this black-box model into a mathematical equation that
retains the neural network's predictive capabilities, while allowing for
interpretation in the context of existing wave theory. The resulting model
reproduces known behavior, generates well-calibrated probabilities, and
achieves better predictive scores on unseen data than current theory. This
showcases how machine learning can facilitate inductive scientific discovery,
and paves the way for more accurate rogue wave forecasting.
Related papers
- CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Towards Causal Deep Learning for Vulnerability Detection [31.59558109518435]
We introduce do calculus based causal learning to software engineering models.
Our results show that CausalVul consistently improved the model accuracy, robustness and OOD performance.
arXiv Detail & Related papers (2023-10-12T00:51:06Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed.
We conducted numerical experiments for regression, classification, and feature selection tasks.
Our results demonstrate that the proposed model does not only yield an attractive prediction performance compared to the competitors.
arXiv Detail & Related papers (2023-07-11T09:54:30Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Hypothesis Testing and Machine Learning: Interpreting Variable Effects
in Deep Artificial Neural Networks using Cohen's f2 [0.0]
Deep artificial neural networks show high predictive performance in many fields.
But they do not afford statistical inferences and their black-box operations are too complicated for humans to comprehend.
This article extends current XAI methods and develops a model agnostic hypothesis testing framework for machine learning.
arXiv Detail & Related papers (2023-02-02T20:43:37Z) - Interpretable models for extrapolation in scientific machine learning [0.0]
Complex machine learning algorithms often outperform simple regressions in interpolative settings.
We examine the trade-off between model performance and interpretability across a broad range of science and engineering problems.
arXiv Detail & Related papers (2022-12-16T19:33:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Accelerating Understanding of Scientific Experiments with End to End
Symbolic Regression [12.008215939224382]
We develop a deep neural network to address the problem of learning free-form symbolic expressions from raw data.
We train our neural network on a synthetic dataset consisting of data tables of varying length and varying levels of noise.
We validate our technique by running on a public dataset from behavioral science.
arXiv Detail & Related papers (2021-12-07T22:28:53Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.