Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting
- URL: http://arxiv.org/abs/2311.12630v2
- Date: Thu, 30 Nov 2023 13:44:21 GMT
- Title: Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting
- Authors: Juhyeon Kim, Hyungeun Lee, Seungwon Yu, Ung Hwang, Wooyul Jung, Miseon
Park, Kijung Yoon
- Abstract summary: We introduce a method of representing multivariate signals as nodes in a graph with edges indicating interdependency between them.
We leverage graph neural networks (GNN) and attention mechanisms to efficiently learn the underlying relationships within the time series data.
The effectiveness of our proposed model is evaluated across various real-world benchmark datasets designed for long-term forecasting tasks.
- Score: 0.16492989697868887
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate time series is prevalent in many scientific and industrial
domains. Modeling multivariate signals is challenging due to their long-range
temporal dependencies and intricate interactions--both direct and indirect. To
confront these complexities, we introduce a method of representing multivariate
signals as nodes in a graph with edges indicating interdependency between them.
Specifically, we leverage graph neural networks (GNN) and attention mechanisms
to efficiently learn the underlying relationships within the time series data.
Moreover, we suggest employing hierarchical signal decompositions running over
the graphs to capture multiple spatial dependencies. The effectiveness of our
proposed model is evaluated across various real-world benchmark datasets
designed for long-term forecasting tasks. The results consistently showcase the
superiority of our model, achieving an average 23\% reduction in mean squared
error (MSE) compared to existing models.
Related papers
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - Entropy Causal Graphs for Multivariate Time Series Anomaly Detection [7.402342914903391]
This work proposes a novel framework called CGAD, an entropy Causal Graph for multivariate time series Anomaly Detection.
CGAD utilizes transfer entropy to construct graph structures that unveil the underlying causal relationships among time series data.
CGAD outperforms state-of-the-art methods on real-world datasets with a 15% average improvement.
arXiv Detail & Related papers (2023-12-15T01:35:00Z) - Coupled Attention Networks for Multivariate Time Series Anomaly
Detection [10.620044922371177]
We propose a coupled attention-based neural network framework (CAN) for anomaly detection in multivariate time series data.
To capture inter-sensor relationships and temporal dependencies, a convolutional neural network based on the global-local graph is integrated with a temporal self-attention module.
arXiv Detail & Related papers (2023-06-12T13:42:56Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.