論文の概要: Contrastive Left-Right Wearable Sensors (IMUs) Consistency Matching for
HAR
- arxiv url: http://arxiv.org/abs/2311.12674v1
- Date: Tue, 21 Nov 2023 15:31:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 00:03:38.942205
- Title: Contrastive Left-Right Wearable Sensors (IMUs) Consistency Matching for
HAR
- Title(参考訳): HAR用コントラスト左右ウェアラブルセンサ(IMUs)整合性マッチング
- Authors: Dominique Nshimyimana, Vitor Fortes Rey and Paul Lukowic
- Abstract要約: 変換なしに、実際のデータを自己教師型学習にどのように使用できるかを示す。
我々のアプローチには、2つの異なるセンサーのコントラストマッチングが含まれる。
我々はオポチュニティとMM-Fitデータセットに対するアプローチを検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning algorithms are improving rapidly, but annotating training
data remains a bottleneck for many applications. In this paper, we show how
real data can be used for self-supervised learning without any transformations
by taking advantage of the symmetry present in the activities. Our approach
involves contrastive matching of two different sensors (left and right wrist or
leg-worn IMUs) to make representations of co-occurring sensor data more similar
and those of non-co-occurring sensor data more different. We test our approach
on the Opportunity and MM-Fit datasets. In MM-Fit we show significant
improvement over the baseline supervised and self-supervised method SimCLR,
while for Opportunity there is significant improvement over the supervised
baseline and slight improvement when compared to SimCLR. Moreover, our method
improves supervised baselines even when using only a small amount of the data
for training. Future work should explore under which conditions our method is
beneficial for human activity recognition systems and other related
applications.
- Abstract(参考訳): 機械学習アルゴリズムは急速に改善されているが、多くのアプリケーションではトレーニングデータの注釈付けがボトルネックとなっている。
本稿では,行動に現れる対称性を生かして,どのような変換も行わずに自己教師付き学習に実データをどのように利用できるかを示す。
我々のアプローチは、2つの異なるセンサー(左手首と右手足のIMU)のコントラストマッチングによって、センサーデータと非共起センサーデータの表現をより類似させる。
我々はオポチュニティとMM-Fitデータセットに対するアプローチを検証した。
MM-Fitでは、ベースラインの教師付きおよび自己教師型手法であるSimCLRよりも大幅に改善され、オポチュニティにおいては教師型ベースラインよりも大幅に改善され、SimCLRと比較してわずかに改善されている。
また,少量のデータのみをトレーニングに使用する場合においても教師付きベースラインを改善した。
今後,本手法が人間の活動認識システムや他の関連アプリケーションにどのような効果があるかを検討する必要がある。
関連論文リスト
- MuJo: Multimodal Joint Feature Space Learning for Human Activity Recognition [2.7532797256542403]
HAR(Human Activity Recognition)は、医療、スポーツ、フィットネス、セキュリティなど、幅広い分野で応用されているAIの長年の問題である。
本研究では,HAR 性能を向上させるため,総合的な Fitness Multimodal Activity データセット (FiMAD) を導入する。
MM-Fit,myoGym, MotionSense, MHEALTH などの実HARデータセット上で,FiMAD で事前学習した分類器の性能が向上することを示す。
論文 参考訳(メタデータ) (2024-06-06T08:42:36Z) - Sensor Data Augmentation from Skeleton Pose Sequences for Improving Human Activity Recognition [5.669438716143601]
HAR(Human Activity Recognition)は、ディープラーニングの普及に大きく貢献していない。
本稿では,センサをベースとしたウェアラブル型HARに対して,ポーズ・ツー・センサ・ネットワークモデルを導入することにより,新たなアプローチを提案する。
コントリビューションには、同時トレーニングの統合、直接ポーズ・ツー・センサ生成、MM-Fitデータセットの包括的な評価が含まれる。
論文 参考訳(メタデータ) (2024-04-25T10:13:18Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
我々は、強化学習のためのモデルに依存しないコントラスト駆動学習フレームワーク(CCLF)を開発した。
CCLFは、サンプルの重要性を完全に活用し、自己管理的な学習効率を向上させる。
このアプローチをDeepMind Control Suite、Atari、MiniGridベンチマークで評価する。
論文 参考訳(メタデータ) (2022-05-02T14:42:05Z) - Transfer-Learning Across Datasets with Different Input Dimensions: An
Algorithm and Analysis for the Linear Regression Case [7.674023644408741]
本稿では,新しいデータと過去のデータを異なる入力次元で組み合わせた転送学習アルゴリズムを提案する。
提案手法は,9つの実生活データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-02-10T14:57:15Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。