論文の概要: OptScaler: A Hybrid Proactive-Reactive Framework for Robust Autoscaling
in the Cloud
- arxiv url: http://arxiv.org/abs/2311.12864v1
- Date: Thu, 26 Oct 2023 04:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 00:21:27.008410
- Title: OptScaler: A Hybrid Proactive-Reactive Framework for Robust Autoscaling
in the Cloud
- Title(参考訳): OptScaler: クラウドにおけるロバスト自動スケーリングのためのハイブリッドなProactive-Reactiveフレームワーク
- Authors: Ding Zou, Wei Lu, Zhibo Zhu, Xingyu Lu, Jun Zhou, Xiaojin Wang, Kangyu
Liu, Haiqing Wang, Kefan Wang, Renen Sun
- Abstract要約: オートスケーリングはクラウドコンピューティングにおいて重要なメカニズムであり、動的ワークロード下でのコンピューティングリソースの自律的な調整をサポートする。
既存のアクティブ自動スケーリングメソッドは将来のワークロードを予測し、事前にリソースをスケールしますが、リアクティブメソッドはリアルタイムシステムフィードバックに依存します。
本稿では,CPU利用制御のためのプロアクティブ手法とリアクティブ手法の両方のパワーを統合するハイブリッド自動スケーリングフレームワークであるOpsScalerを提案する。
- 参考スコア(独自算出の注目度): 11.340252931723063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoscaling is a vital mechanism in cloud computing that supports the
autonomous adjustment of computing resources under dynamic workloads. A primary
goal of autoscaling is to stabilize resource utilization at a desirable level,
thus reconciling the need for resource-saving with the satisfaction of Service
Level Objectives (SLOs). Existing proactive autoscaling methods anticipate the
future workload and scale the resources in advance, whereas the reliability may
suffer from prediction deviations arising from the frequent fluctuations and
noise of cloud workloads; reactive methods rely on real-time system feedback,
while the hysteretic nature of reactive methods could cause violations of the
rigorous SLOs. To this end, this paper presents OptScaler, a hybrid autoscaling
framework that integrates the power of both proactive and reactive methods for
regulating CPU utilization. Specifically, the proactive module of OptScaler
consists of a sophisticated workload prediction model and an optimization
model, where the former provides reliable inputs to the latter for making
optimal scaling decisions. The reactive module provides a self-tuning estimator
of CPU utilization to the optimization model. We embed Model Predictive Control
(MPC) mechanism and robust optimization techniques into the optimization model
to further enhance its reliability. Numerical results have demonstrated the
superiority of both the workload prediction model and the hybrid framework of
OptScaler in the scenario of online services compared to prevalent reactive,
proactive, or hybrid autoscalers. OptScaler has been successfully deployed at
Alipay, supporting the autoscaling of applets in the world-leading payment
platform.
- Abstract(参考訳): オートスケーリングはクラウドコンピューティングにおいて重要なメカニズムであり、動的ワークロード下でのコンピューティングリソースの自律的な調整をサポートする。
自動スケーリングの主な目的は、望ましいレベルでリソース利用を安定させることであり、サービスレベル目標(slos)の満足度とリソース節約の必要性を調和させることである。
既存のアクティブ自動スケーリング手法は将来のワークロードを予測し、事前にリソースをスケールするが、信頼性はクラウドワークロードの頻繁な変動とノイズに起因する予測偏差に悩まされる可能性がある。
そこで本稿では,cpu使用率を調節するproactiveとreactiveの両方の方法を統合するハイブリッドオートスケーリングフレームワーク optscaler を提案する。
具体的には、 optscaler の proactive module は高度なワークロード予測モデルと最適化モデルで構成されており、前者は最適なスケーリング決定を行うために後者に信頼できる入力を提供する。
リアクティブモジュールは最適化モデルにCPU利用の自己チューニング推定器を提供する。
モデル予測制御(mpc)機構とロバスト最適化手法を最適化モデルに組み込んで信頼性をさらに向上させる。
オンラインサービスのシナリオにおいて、ワークロード予測モデルとOptScalerのハイブリッドフレームワークの両方が、一般的なリアクティブ、プロアクティブ、ハイブリッドオートスケーラと比較して優れていることを示す。
OptScalerはAlipayにデプロイされ、世界リードの支払いプラットフォームにおけるアプレットの自動スケーリングをサポートする。
関連論文リスト
- Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
本稿では、利用可能なデータからシステムダイナミクスを推定し、仮想モデルロールアウトにおけるポリシー最適化を行うモデルベース強化学習アルゴリズムについて考察する。
このアプローチは、実際のシステムで破滅的な失敗を引き起こす可能性のあるモデルエラーを悪用することに対して脆弱である。
D4RLベンチマークの1つのよく校正された自己回帰モデルにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:18:15Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - A Deep Recurrent-Reinforcement Learning Method for Intelligent AutoScaling of Serverless Functions [18.36339203254509]
Fは軽量で関数ベースのクラウド実行モデルを導入し、IoTエッジデータ処理や異常検出など、さまざまなアプリケーションでその妥当性を見出す。
論文 参考訳(メタデータ) (2023-08-11T04:41:19Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - A Meta Reinforcement Learning Approach for Predictive Autoscaling in the
Cloud [10.970391043991363]
本稿では,CPU利用の安定レベルを維持するために資源を最適に割り当てることを目的とした,エンドツーエンドのメタモデルに基づくRLアルゴリズムを提案する。
当社のアルゴリズムは,スケーリング戦略の予測可能性と精度を確保するだけでなく,スケーリング決定が変化するワークロードに高いサンプル効率で適応できるようにする。
論文 参考訳(メタデータ) (2022-05-31T13:54:04Z) - A Reinforcement Learning-based Economic Model Predictive Control
Framework for Autonomous Operation of Chemical Reactors [0.5735035463793008]
本研究では,非線形系のオンラインモデルパラメータ推定のためのEMPCとRLを統合するための新しいフレームワークを提案する。
最先端のRLアルゴリズムとEMPCスキームを最小限の修正で使用できます。
論文 参考訳(メタデータ) (2021-05-06T13:34:30Z) - A Predictive Autoscaler for Elastic Batch Jobs [8.354712625979776]
Deep Learning、HPC、Sparkといった大規模なバッチジョブは、従来のオンラインサービスよりもはるかに多くの計算リソースとコストを必要とします。
顧客とオーバプロビジョンインスタンスに対して,柔軟なインターフェースを提供するための予測オートスケーラを提案する。
論文 参考訳(メタデータ) (2020-10-10T17:35:55Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。