An Embodied Generalist Agent in 3D World
- URL: http://arxiv.org/abs/2311.12871v3
- Date: Thu, 9 May 2024 17:35:44 GMT
- Title: An Embodied Generalist Agent in 3D World
- Authors: Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li, Song-Chun Zhu, Baoxiong Jia, Siyuan Huang,
- Abstract summary: We introduce LEO, an embodied multi-modal generalist agent that excels in perceiving, grounding, reasoning, planning, and acting in the 3D world.
We collect large-scale datasets comprising diverse object-level and scene-level tasks, which require considerable understanding of and interaction with the 3D world.
Through extensive experiments, we demonstrate LEO's remarkable proficiency across a wide spectrum of tasks, including 3D captioning, question answering, embodied reasoning, navigation and manipulation.
- Score: 67.16935110789528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging massive knowledge from large language models (LLMs), recent machine learning models show notable successes in general-purpose task solving in diverse domains such as computer vision and robotics. However, several significant challenges remain: (i) most of these models rely on 2D images yet exhibit a limited capacity for 3D input; (ii) these models rarely explore the tasks inherently defined in 3D world, e.g., 3D grounding, embodied reasoning and acting. We argue these limitations significantly hinder current models from performing real-world tasks and approaching general intelligence. To this end, we introduce LEO, an embodied multi-modal generalist agent that excels in perceiving, grounding, reasoning, planning, and acting in the 3D world. LEO is trained with a unified task interface, model architecture, and objective in two stages: (i) 3D vision-language (VL) alignment and (ii) 3D vision-language-action (VLA) instruction tuning. We collect large-scale datasets comprising diverse object-level and scene-level tasks, which require considerable understanding of and interaction with the 3D world. Moreover, we meticulously design an LLM-assisted pipeline to produce high-quality 3D VL data. Through extensive experiments, we demonstrate LEO's remarkable proficiency across a wide spectrum of tasks, including 3D captioning, question answering, embodied reasoning, navigation and manipulation. Our ablative studies and scaling analyses further provide valuable insights for developing future embodied generalist agents. Code and data are available on project page.
Related papers
- LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image [72.14973729674995]
Current 3D perception methods, particularly small models, struggle with processing logical reasoning, question-answering, and handling open scenario categories.
We propose solutions: Spatial-Enhanced Local Feature Mining for better spatial feature extraction, 3D Query Token-Derived Info Decoding for precise geometric regression, and Geometry Projection-Based 3D Reasoning for handling camera focal length variations.
arXiv Detail & Related papers (2024-08-14T10:00:16Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
This survey provides a comprehensive overview of the methodologies enabling large language models to process, understand, and generate 3D data.
Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs)
It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue.
arXiv Detail & Related papers (2024-05-16T16:59:58Z) - OmniDrive: A Holistic LLM-Agent Framework for Autonomous Driving with 3D Perception, Reasoning and Planning [68.45848423501927]
We propose a holistic framework for strong alignment between agent models and 3D driving tasks.
Our framework starts with a novel 3D MLLM architecture that uses sparse queries to lift and compress visual representations into 3D.
We propose OmniDrive-nuScenes, a new visual question-answering dataset challenging the true 3D situational awareness of a model.
arXiv Detail & Related papers (2024-05-02T17:59:24Z) - 3D-VLA: A 3D Vision-Language-Action Generative World Model [68.0388311799959]
Recent vision-language-action (VLA) models rely on 2D inputs, lacking integration with the broader realm of the 3D physical world.
We propose 3D-VLA by introducing a new family of embodied foundation models that seamlessly link 3D perception, reasoning, and action.
Our experiments on held-in datasets demonstrate that 3D-VLA significantly improves the reasoning, multimodal generation, and planning capabilities in embodied environments.
arXiv Detail & Related papers (2024-03-14T17:58:41Z) - M3DBench: Let's Instruct Large Models with Multi-modal 3D Prompts [30.571811801090224]
We introduce a comprehensive 3D instructionfollowing dataset called M3DBench.
It supports general multimodal instructions interleaved with text, images, 3D objects, and other visual prompts.
It unifies diverse 3D tasks at both region and scene levels, covering a variety of fundamental abilities in real-world 3D environments.
arXiv Detail & Related papers (2023-12-17T16:53:30Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore.
We propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations.
arXiv Detail & Related papers (2023-06-04T11:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.