ObjVariantEnsemble: Advancing Point Cloud LLM Evaluation in Challenging Scenes with Subtly Distinguished Objects
- URL: http://arxiv.org/abs/2412.14837v1
- Date: Thu, 19 Dec 2024 13:27:58 GMT
- Title: ObjVariantEnsemble: Advancing Point Cloud LLM Evaluation in Challenging Scenes with Subtly Distinguished Objects
- Authors: Qihang Cao, Huangxun Chen,
- Abstract summary: 3D scene understanding is an important task, and there has been a recent surge of research interest in aligning 3D representations of point clouds with text to empower embodied AI.
Due to the lack of comprehensive 3D benchmarks, the capabilities of 3D models in real-world scenes, particularly those that are challenging with subtly distinguished objects, remain insufficiently investigated.
- Score: 1.5408065585641535
- License:
- Abstract: 3D scene understanding is an important task, and there has been a recent surge of research interest in aligning 3D representations of point clouds with text to empower embodied AI. However, due to the lack of comprehensive 3D benchmarks, the capabilities of 3D models in real-world scenes, particularly those that are challenging with subtly distinguished objects, remain insufficiently investigated. To facilitate a more thorough evaluation of 3D models' capabilities, we propose a scheme, ObjVariantEnsemble, to systematically introduce more scenes with specified object classes, colors, shapes, quantities, and spatial relationships to meet model evaluation needs. More importantly, we intentionally construct scenes with similar objects to a certain degree and design an LLM-VLM-cooperated annotator to capture key distinctions as annotations. The resultant benchmark can better challenge 3D models, reveal their shortcomings in understanding, and potentially aid in the further development of 3D models.
Related papers
- Unlocking Textual and Visual Wisdom: Open-Vocabulary 3D Object Detection Enhanced by Comprehensive Guidance from Text and Image [70.02187124865627]
Open-vocabulary 3D object detection (OV-3DDet) aims to localize and recognize both seen and previously unseen object categories within any new 3D scene.
We leverage a vision foundation model to provide image-wise guidance for discovering novel classes in 3D scenes.
We demonstrate significant improvements in accuracy and generalization, highlighting the potential of foundation models in advancing open-vocabulary 3D object detection.
arXiv Detail & Related papers (2024-07-07T04:50:04Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - 3D objects and scenes classification, recognition, segmentation, and
reconstruction using 3D point cloud data: A review [5.85206759397617]
Three-dimensional (3D) point cloud analysis has become one of the attractive subjects in realistic imaging and machine visions.
A significant effort has recently been devoted to developing novel strategies, using different techniques such as deep learning models.
Various tasks performed on 3D point could data are investigated, including objects and scenes detection, recognition, segmentation and reconstruction.
arXiv Detail & Related papers (2023-06-09T15:45:23Z) - NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization [80.3424839706698]
We present NeurOCS, a framework that uses instance masks 3D boxes as input to learn 3D object shapes by means of differentiable rendering.
Our approach rests on insights in learning a category-level shape prior directly from real driving scenes.
We make critical design choices to learn object coordinates more effectively from an object-centric view.
arXiv Detail & Related papers (2023-05-28T16:18:41Z) - Prompt-guided Scene Generation for 3D Zero-Shot Learning [8.658191774247944]
We propose a prompt-guided 3D scene generation and supervision method to augment 3D data to learn the network better.
First, we merge point clouds of two 3D models in certain ways described by a prompt. The prompt acts like the annotation describing each 3D scene.
We have achieved state-of-the-art ZSL and generalized ZSL performance on synthetic (ModelNet40, ModelNet10) and real-scanned (ScanOjbectNN) 3D object datasets.
arXiv Detail & Related papers (2022-09-29T11:24:33Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z) - Learning to Reconstruct and Segment 3D Objects [4.709764624933227]
We aim to understand scenes and the objects within them by learning general and robust representations using deep neural networks.
This thesis makes three core contributions from object-level 3D shape estimation from single or multiple views to scene-level semantic understanding.
arXiv Detail & Related papers (2020-10-19T15:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.