LLVM Static Analysis for Program Characterization and Memory Reuse
Profile Estimation
- URL: http://arxiv.org/abs/2311.12883v1
- Date: Mon, 20 Nov 2023 23:05:06 GMT
- Title: LLVM Static Analysis for Program Characterization and Memory Reuse
Profile Estimation
- Authors: Atanu Barai, Nandakishore Santhi, Abdur Razzak, Stephan Eidenbenz and
Abdel-Hameed A. Badawy
- Abstract summary: This paper presents an LLVM-based probabilistic static analysis method.
It accurately predicts different program characteristics and estimates the reuse distance profile of a program.
The results show that our approach can predict application characteristics accurately compared to another LLVM-based dynamic code analysis tool, Byfl.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Profiling various application characteristics, including the number of
different arithmetic operations performed, memory footprint, etc., dynamically
is time- and space-consuming. On the other hand, static analysis methods,
although fast, can be less accurate. This paper presents an LLVM-based
probabilistic static analysis method that accurately predicts different program
characteristics and estimates the reuse distance profile of a program by
analyzing the LLVM IR file in constant time, regardless of program input size.
We generate the basic-block-level control flow graph of the target application
kernel and determine basic-block execution counts by solving the linear balance
equation involving the adjacent basic blocks' transition probabilities.
Finally, we represent the kernel memory accesses in a bracketed format and
employ a recursive algorithm to calculate the reuse distance profile. The
results show that our approach can predict application characteristics
accurately compared to another LLVM-based dynamic code analysis tool, Byfl.
Related papers
- LLMDFA: Analyzing Dataflow in Code with Large Language Models [8.92611389987991]
This paper presents LLMDFA, a compilation-free and customizable dataflow analysis framework.
We decompose the problem into several subtasks and introduce a series of novel strategies.
On average, LLMDFA achieves 87.10% precision and 80.77% recall, surpassing existing techniques with F1 score improvements of up to 0.35.
arXiv Detail & Related papers (2024-02-16T15:21:35Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Exploring Techniques for the Analysis of Spontaneous Asynchronicity in
MPI-Parallel Applications [0.8889304968879161]
We run microbenchmarks and realistic proxy applications with the regular compute-communicate structure on two different supercomputing platforms.
We show how desynchronization patterns can be readily identified from a data set that is much smaller than a full MPI trace.
arXiv Detail & Related papers (2022-05-27T13:19:07Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
We introduce Continuous Meta-Learning (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field.
Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous.
We show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
arXiv Detail & Related papers (2022-03-02T22:35:58Z) - Rissanen Data Analysis: Examining Dataset Characteristics via
Description Length [78.42578316883271]
We introduce a method to determine if a certain capability helps to achieve an accurate model of given data.
Since minimum program length is uncomputable, we estimate the labels' minimum description length (MDL) as a proxy.
We call the method Rissanen Data Analysis (RDA) after the father of MDL.
arXiv Detail & Related papers (2021-03-05T18:58:32Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Learning the Step-size Policy for the Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno Algorithm [3.7470451129384825]
We consider the problem of how to learn a step-size policy for the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm.
We propose a neural network architecture with local information of the current gradient as the input.
The step-length policy is learned from data of similar optimization problems, avoids additional evaluations of the objective function, and guarantees that the output step remains inside a pre-defined interval.
arXiv Detail & Related papers (2020-10-03T09:34:03Z) - Transforming Probabilistic Programs for Model Checking [0.0]
We apply static analysis to probabilistic programs to automate large parts of two crucial model checking methods.
Our method transforms a probabilistic program specifying a density function into an efficient forward-sampling form.
We present an implementation targeting the popular Stan probabilistic programming language.
arXiv Detail & Related papers (2020-08-21T21:06:34Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.