論文の概要: Long-MIL: Scaling Long Contextual Multiple Instance Learning for
Histopathology Whole Slide Image Analysis
- arxiv url: http://arxiv.org/abs/2311.12885v1
- Date: Tue, 21 Nov 2023 03:08:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 17:34:41.402476
- Title: Long-MIL: Scaling Long Contextual Multiple Instance Learning for
Histopathology Whole Slide Image Analysis
- Title(参考訳): Long-MIL:スライディング画像解析のための長期マルチインスタンス学習のスケーリング
- Authors: Honglin Li, Yunlong Zhang, Chenglu Zhu, Jiatong Cai, Sunyi Zheng, Lin
Yang
- Abstract要約: 病理組織の全スライド画像(WSI)を解析に用いる。
以前の方法は一般的にWSIを多数のパッチに分割し、WSI内のすべてのパッチを集約してスライドレベルの予測を行う。
本稿では,線形バイアスを注意に導入することにより,形状の異なる長文WSIの位置埋め込みを改善することを提案する。
- 参考スコア(独自算出の注目度): 9.912061800841267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Histopathology image analysis is the golden standard of clinical diagnosis
for Cancers. In doctors daily routine and computer-aided diagnosis, the Whole
Slide Image (WSI) of histopathology tissue is used for analysis. Because of the
extremely large scale of resolution, previous methods generally divide the WSI
into a large number of patches, then aggregate all patches within a WSI by
Multi-Instance Learning (MIL) to make the slide-level prediction when
developing computer-aided diagnosis tools. However, most previous WSI-MIL
models using global-attention without pairwise interaction and any positional
information, or self-attention with absolute position embedding can not well
handle shape varying large WSIs, e.g. testing WSIs after model deployment may
be larger than training WSIs, since the model development set is always limited
due to the difficulty of histopathology WSIs collection. To deal with the
problem, in this paper, we propose to amend position embedding for shape
varying long-contextual WSI by introducing Linear Bias into Attention, and
adapt it from 1-d long sequence into 2-d long-contextual WSI which helps model
extrapolate position embedding to unseen or under-fitted positions. We further
utilize Flash-Attention module to tackle the computational complexity of
Transformer, which also keep full self-attention performance compared to
previous attention approximation work. Our method, Long-contextual MIL
(Long-MIL) are evaluated on extensive experiments including 4 dataset including
WSI classification and survival prediction tasks to validate the superiority on
shape varying WSIs. The source code will be open-accessed soon.
- Abstract(参考訳): 病理組織像解析は癌の臨床診断の黄金の基準である。
医師の日常とコンピュータ支援による診断では、病理組織の全スライド画像(WSI)が分析に用いられる。
非常に大規模な解像度のため、従来の方法は一般にwsiを多数のパッチに分けて、マルチインスタンス学習(mil)によってwsi内のすべてのパッチを集約し、コンピュータ支援診断ツールを開発する際のスライドレベルの予測を行う。
しかしながら,従来のwsi-milモデルでは,双対的相互作用や位置情報を用いないグローバル・アテンションや絶対位置埋め込みを用いたセルフアテンションでは,モデル展開後のwsisは,病理組織wsis収集の難しさから常にモデル開発セットが制限されるため,トレーニングwsisよりも大きな形状のwsisを処理できない場合がある。
この問題に対処するため,本論文では,Linear BiasをAttentionに導入することにより,形状の異なる長コンテキストWSIに対する位置埋め込みを修正し,それを1次元長コンテキストWSIから2次元長コンテキストWSIに適応させることを提案する。
さらに,flash-attentionモジュールを用いてトランスフォーマの計算複雑性に対処し,従来の注意近似作業と比較して,完全なセルフアテンション性能を維持している。
本手法は,WSI分類や生存予測タスクを含む4つのデータセットを含む広範囲な実験により,形態の異なるWSIの優越性を検証した。
ソースコードは近々公開される予定だ。
関連論文リスト
- Rethinking Transformer for Long Contextual Histopathology Whole Slide Image Analysis [9.090504201460817]
ヒストホイルスライド画像(英語版)(WSI)解析は、医師の日常業務における臨床がん診断のゴールドスタンダードとなっている。
従来の手法では、スライドレベルラベルのみを与えられたスライドレベルの予測を可能にするために、マルチパスラーニングが一般的であった。
大規模なWSIにおける長いシーケンスの計算複雑性を軽減するため、HIPTではリージョンスライシング、TransMILでは完全な自己アテンションの近似を採用している。
論文 参考訳(メタデータ) (2024-10-18T06:12:36Z) - WSI-VQA: Interpreting Whole Slide Images by Generative Visual Question Answering [6.315841446240698]
生成的視覚的質問応答により,スライド画像全体(WSI)を解釈する新しい枠組みを提案する。
WSI-VQAは、様々なスライドレベルのタスクを質問応答パターンで記述することで、普遍性を示す。
8672のスライドレベル質問応答対と977のWSIを含むWSI-VQAデータセットを構築した。
論文 参考訳(メタデータ) (2024-07-08T04:37:32Z) - PathAlign: A vision-language model for whole slide images in histopathology [13.567674461880905]
We developed a vision- language model based on the BLIP-2 framework using WSIs and curated text from pathology reports。
これにより、関心のある事例を見つけるために、テキストや画像検索などの共有画像テキスト埋め込みスペースを利用することができる。
本稿では、WSI埋め込みを用いたテキスト生成とテキスト検索の病理学評価と、WSI分類とワークフロー優先順位付けの結果について述べる。
論文 参考訳(メタデータ) (2024-06-27T23:43:36Z) - TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Benchは、ディープラーニング技術を利用した時系列計算のための総合ベンチマークスイートである。
TSI-Benchパイプラインは、実験的な設定を標準化し、計算アルゴリズムの公平な評価を可能にする。
TSI-Benchは、計算目的のために時系列予測アルゴリズムを調整するための体系的なパラダイムを革新的に提供する。
論文 参考訳(メタデータ) (2024-06-18T16:07:33Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
本稿では,WSI分析のためのフレームワークMamMILを提案する。
私たちは各WSIを非指向グラフとして表現します。
マンバが1次元シーケンスしか処理できない問題に対処するために、トポロジ対応の走査機構を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:02:13Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。