De-fine: Decomposing and Refining Visual Programs with Auto-Feedback
- URL: http://arxiv.org/abs/2311.12890v3
- Date: Mon, 5 Aug 2024 13:10:02 GMT
- Title: De-fine: Decomposing and Refining Visual Programs with Auto-Feedback
- Authors: Minghe Gao, Juncheng Li, Hao Fei, Liang Pang, Wei Ji, Guoming Wang, Zheqi Lv, Wenqiao Zhang, Siliang Tang, Yueting Zhuang,
- Abstract summary: De-fine is a training-free framework that decomposes complex tasks into simpler subtasks and refines programs through auto-feedback.
Our experiments across various visual tasks show that De-fine creates more robust programs.
- Score: 75.62712247421146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual programming, a modular and generalizable paradigm, integrates different modules and Python operators to solve various vision-language tasks. Unlike end-to-end models that need task-specific data, it advances in performing visual processing and reasoning in an unsupervised manner. Current visual programming methods generate programs in a single pass for each task where the ability to evaluate and optimize based on feedback, unfortunately, is lacking, which consequentially limits their effectiveness for complex, multi-step problems. Drawing inspiration from benders decomposition, we introduce De-fine, a training-free framework that automatically decomposes complex tasks into simpler subtasks and refines programs through auto-feedback. This model-agnostic approach can improve logical reasoning performance by integrating the strengths of multiple models. Our experiments across various visual tasks show that De-fine creates more robust programs. Moreover, viewing each feedback module as an independent agent will yield fresh prospects for the field of agent research.
Related papers
- VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use [74.39058448757645]
We present VipAct, an agent framework that enhances vision-language models (VLMs)
VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks.
We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements.
arXiv Detail & Related papers (2024-10-21T18:10:26Z) - InsightSee: Advancing Multi-agent Vision-Language Models for Enhanced Visual Understanding [12.082379948480257]
This paper proposes InsightSee, a multi-agent framework to enhance vision-language models' capabilities in handling complex visual understanding scenarios.
The framework comprises a description agent, two reasoning agents, and a decision agent, which are integrated to refine the process of visual information interpretation.
The proposed framework outperforms state-of-the-art algorithms in 6 out of 9 benchmark tests, with a substantial advancement in multimodal understanding.
arXiv Detail & Related papers (2024-05-31T13:56:55Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism [7.479892725446205]
Multi-task learning (MTL) is a paradigm that simultaneously learns multiple tasks by sharing information at different levels.
We introduce a posteriori information into the model, considering that different tasks may produce correlated outputs with mutual influences.
We achieve this by incorporating a feedback mechanism into MTL models, where the output of one task serves as a hidden feature for another task.
arXiv Detail & Related papers (2024-04-01T03:27:34Z) - CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations [61.21923643289266]
Chain of Manipulations is a mechanism that enables Vision-Language Models to solve problems step-by-step with evidence.
After training, models can solve various visual problems by eliciting intrinsic manipulations (e.g., grounding, zoom in) actively without involving external tools.
Our trained model, textbfCogCoM, achieves state-of-the-art performance across 9 benchmarks from 4 categories.
arXiv Detail & Related papers (2024-02-06T18:43:48Z) - SeMAIL: Eliminating Distractors in Visual Imitation via Separated Models [22.472167814814448]
We propose a new model-based imitation learning algorithm named Separated Model-based Adversarial Imitation Learning (SeMAIL)
Our method achieves near-expert performance on various visual control tasks with complex observations and the more challenging tasks with different backgrounds from expert observations.
arXiv Detail & Related papers (2023-06-19T04:33:44Z) - Visual Programming: Compositional visual reasoning without training [24.729624386851388]
VISPROG is a neuro-symbolic approach to solving complex and compositional visual tasks.
It uses the in-context learning ability of large language models to generate python-like modular programs.
arXiv Detail & Related papers (2022-11-18T18:50:09Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z) - How to Design Sample and Computationally Efficient VQA Models [53.65668097847456]
We find that representing the text as probabilistic programs and images as object-level scene graphs best satisfy these desiderata.
We extend existing models to leverage these soft programs and scene graphs to train on question answer pairs in an end-to-end manner.
arXiv Detail & Related papers (2021-03-22T01:48:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.