Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer
- URL: http://arxiv.org/abs/2311.12905v1
- Date: Tue, 21 Nov 2023 13:12:21 GMT
- Title: Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer
- Authors: Wenqiao Zhang, Zheqi Lv, Hao Zhou, Jia-Wei Liu, Juncheng Li, Mengze
Li, Siliang Tang, Yueting Zhuang
- Abstract summary: Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.
This setting neglects the more practical scenario where training data are collected from multiple sources.
This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains.
- Score: 69.82229895838577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a
new target domain by actively selecting a limited number of target data to
annotate.This setting neglects the more practical scenario where training data
are collected from multiple sources. This motivates us to target a new and
challenging setting of knowledge transfer that extends ADA from a single source
domain to multiple source domains, termed Multi-source Active Domain Adaptation
(MADA). Not surprisingly, we find that most traditional ADA methods cannot work
directly in such a setting, mainly due to the excessive domain gap introduced
by all the source domains and thus their uncertainty-aware sample selection can
easily become miscalibrated under the multi-domain shifts. Considering this, we
propose a Dynamic integrated uncertainty valuation framework(Detective) that
comprehensively consider the domain shift between multi-source domains and
target domain to detect the informative target samples. Specifically, the
leverages a dynamic Domain Adaptation(DA) model that learns how to adapt the
model's parameters to fit the union of multi-source domains. This enables an
approximate single-source domain modeling by the dynamic model. We then
comprehensively measure both domain uncertainty and predictive uncertainty in
the target domain to detect informative target samples using evidential deep
learning, thereby mitigating uncertainty miscalibration. Furthermore, we
introduce a contextual diversity-aware calculator to enhance the diversity of
the selected samples. Experiments demonstrate that our solution outperforms
existing methods by a considerable margin on three domain adaptation
benchmarks.
Related papers
- Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge from related source domains to an unlabeled target domain.
We propose a novel approach called Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation (D3AAMDA)
This mechanism controls the alignment level of features between each source domain and the target domain, effectively leveraging the local advantageous feature information within the source domains.
arXiv Detail & Related papers (2023-07-26T09:40:19Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains)
Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains.
We propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation.
arXiv Detail & Related papers (2023-04-07T15:46:38Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge [22.285156929279207]
Domain generalization aims at learning a universal model that performs well on unseen target domains.
We propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG)
arXiv Detail & Related papers (2022-07-11T14:46:50Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - T-SVDNet: Exploring High-Order Prototypical Correlations for
Multi-Source Domain Adaptation [41.356774580308986]
We propose a novel approach named T-SVDNet to address the task of Multi-source Domain Adaptation.
High-order correlations among multiple domains and categories are fully explored so as to better bridge the domain gap.
To avoid negative transfer brought by noisy source data, we propose a novel uncertainty-aware weighting strategy.
arXiv Detail & Related papers (2021-07-30T06:33:05Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation [26.929772844572213]
We introduce a fixed ratio-based mixup to augment multiple intermediate domains between the source and target domain.
We train the source-dominant model and the target-dominant model that have complementary characteristics.
Through our proposed methods, the models gradually transfer domain knowledge from the source to the target domain.
arXiv Detail & Related papers (2020-11-18T11:58:19Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Multi-Source Domain Adaptation for Text Classification via
DistanceNet-Bandits [101.68525259222164]
We present a study of various distance-based measures in the context of NLP tasks, that characterize the dissimilarity between domains based on sample estimates.
We develop a DistanceNet model which uses these distance measures as an additional loss function to be minimized jointly with the task's loss function.
We extend this model to a novel DistanceNet-Bandit model, which employs a multi-armed bandit controller to dynamically switch between multiple source domains.
arXiv Detail & Related papers (2020-01-13T15:53:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.