CovarNav: Machine Unlearning via Model Inversion and Covariance
Navigation
- URL: http://arxiv.org/abs/2311.12999v1
- Date: Tue, 21 Nov 2023 21:19:59 GMT
- Title: CovarNav: Machine Unlearning via Model Inversion and Covariance
Navigation
- Authors: Ali Abbasi, Chayne Thrash, Elaheh Akbari, Daniel Zhang, Soheil Kolouri
- Abstract summary: Machine unlearning has emerged as an essential technique to selectively remove the influence of specific training data points on trained models.
We introduce a three-step process, named CovarNav, to facilitate this forgetting.
We rigorously evaluate CovarNav on the CIFAR-10 and Vggface2 datasets.
- Score: 11.222501077070765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress of AI, combined with its unprecedented public adoption and
the propensity of large neural networks to memorize training data, has given
rise to significant data privacy concerns. To address these concerns, machine
unlearning has emerged as an essential technique to selectively remove the
influence of specific training data points on trained models. In this paper, we
approach the machine unlearning problem through the lens of continual learning.
Given a trained model and a subset of training data designated to be forgotten
(i.e., the "forget set"), we introduce a three-step process, named CovarNav, to
facilitate this forgetting. Firstly, we derive a proxy for the model's training
data using a model inversion attack. Secondly, we mislabel the forget set by
selecting the most probable class that deviates from the actual ground truth.
Lastly, we deploy a gradient projection method to minimize the cross-entropy
loss on the modified forget set (i.e., learn incorrect labels for this set)
while preventing forgetting of the inverted samples. We rigorously evaluate
CovarNav on the CIFAR-10 and Vggface2 datasets, comparing our results with
recent benchmarks in the field and demonstrating the efficacy of our proposed
approach.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Accurate Forgetting for All-in-One Image Restoration Model [3.367455972998532]
Currently, a low-cost scheme called Machine Unlearning forgets the private data remembered in the model.
Inspired by this, we try to use this concept to bridge the gap between the fields of image restoration and security.
arXiv Detail & Related papers (2024-09-01T10:14:16Z) - Decoupling the Class Label and the Target Concept in Machine Unlearning [81.69857244976123]
Machine unlearning aims to adjust a trained model to approximate a retrained one that excludes a portion of training data.
Previous studies showed that class-wise unlearning is successful in forgetting the knowledge of a target class.
We propose a general framework, namely, TARget-aware Forgetting (TARF)
arXiv Detail & Related papers (2024-06-12T14:53:30Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
We classify transient noise signals (i.e.glitches) and gravitational waves in data from the Advanced LIGO detectors.
We use models with a supervised learning approach, both trained from scratch using the Gravity Spy dataset.
We also explore a self-supervised approach, pre-training models with automatically generated pseudo-labels.
arXiv Detail & Related papers (2023-03-24T11:12:37Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
We consider instance-wise unlearning, of which the goal is to delete information on a set of instances from a pre-trained model.
We propose two methods that reduce forgetting on the remaining data: 1) utilizing adversarial examples to overcome forgetting at the representation-level and 2) leveraging weight importance metrics to pinpoint network parameters guilty of propagating unwanted information.
arXiv Detail & Related papers (2023-01-27T07:53:50Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.