Learning to Fly in Seconds
- URL: http://arxiv.org/abs/2311.13081v2
- Date: Mon, 8 Apr 2024 21:04:51 GMT
- Title: Learning to Fly in Seconds
- Authors: Jonas Eschmann, Dario Albani, Giuseppe Loianno,
- Abstract summary: We show how curriculum learning and a highly optimized simulator enhance sample complexity and lead to fast training times.
Our framework enables Simulation-to-Reality (Sim2Real) transfer for direct control after only 18 seconds of training on a consumer-grade laptop.
- Score: 7.259696592534715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based methods, particularly Reinforcement Learning (RL), hold great promise for streamlining deployment, enhancing performance, and achieving generalization in the control of autonomous multirotor aerial vehicles. Deep RL has been able to control complex systems with impressive fidelity and agility in simulation but the simulation-to-reality transfer often brings a hard-to-bridge reality gap. Moreover, RL is commonly plagued by prohibitively long training times. In this work, we propose a novel asymmetric actor-critic-based architecture coupled with a highly reliable RL-based training paradigm for end-to-end quadrotor control. We show how curriculum learning and a highly optimized simulator enhance sample complexity and lead to fast training times. To precisely discuss the challenges related to low-level/end-to-end multirotor control, we also introduce a taxonomy that classifies the existing levels of control abstractions as well as non-linearities and domain parameters. Our framework enables Simulation-to-Reality (Sim2Real) transfer for direct RPM control after only 18 seconds of training on a consumer-grade laptop as well as its deployment on microcontrollers to control a multirotor under real-time guarantees. Finally, our solution exhibits competitive performance in trajectory tracking, as demonstrated through various experimental comparisons with existing state-of-the-art control solutions using a real Crazyflie nano quadrotor. We open source the code including a very fast multirotor dynamics simulator that can simulate about 5 months of flight per second on a laptop GPU. The fast training times and deployment to a cheap, off-the-shelf quadrotor lower the barriers to entry and help democratize the research and development of these systems.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Resilient Control of Networked Microgrids using Vertical Federated
Reinforcement Learning: Designs and Real-Time Test-Bed Validations [5.394255369988441]
This paper presents a novel federated reinforcement learning (Fed-RL) approach to tackle (a) model complexities, unknown dynamical behaviors of IBR devices, (b) privacy issues regarding data sharing in multi-party-owned networked grids, and (2) transfers learned controls from simulation to hardware-in-the-loop test-bed.
Experiments show that the simulator-trained RL controllers produce convincing results with the real-time test-bed set-up, validating the minimization of sim-to-real gap.
arXiv Detail & Related papers (2023-11-21T00:59:27Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Skip Training for Multi-Agent Reinforcement Learning Controller for
Industrial Wave Energy Converters [94.84709449845352]
Recent Wave Energy Converters (WEC) are equipped with multiple legs and generators to maximize energy generation.
Traditional controllers have shown limitations to capture complex wave patterns and the controllers must efficiently maximize the energy capture.
This paper introduces a Multi-Agent Reinforcement Learning controller (MARL), which outperforms the traditionally used spring damper controller.
arXiv Detail & Related papers (2022-09-13T00:20:31Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Learning to Control Direct Current Motor for Steering in Real Time via
Reinforcement Learning [2.3554584457413483]
We make use of the NFQ algorithm for steering position control of a golf cart in both a real hardware and a simulated environment.
We were able to increase the rate of successful control under four minutes in simulation and under 11 minutes in real hardware.
arXiv Detail & Related papers (2021-07-31T03:24:36Z) - Learning to Fly -- a Gym Environment with PyBullet Physics for
Reinforcement Learning of Multi-agent Quadcopter Control [0.0]
We propose an open-source environment for multiple quadcopters based on the Bullet physics engine.
Its multi-agent and vision based reinforcement learning interfaces, as well as the support of realistic collisions and aerodynamic effects, make it, to the best of our knowledge, a first of its kind.
arXiv Detail & Related papers (2021-03-03T02:47:59Z) - Reinforcement Learning for Control of Valves [0.0]
This paper is a study of reinforcement learning (RL) as an optimal-control strategy for control of nonlinear valves.
It is evaluated against the PID (proportional-integral-derivative) strategy, using a unified framework.
arXiv Detail & Related papers (2020-12-29T09:01:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.