論文の概要: Detecting out-of-distribution text using topological features of
transformer-based language models
- arxiv url: http://arxiv.org/abs/2311.13102v1
- Date: Wed, 22 Nov 2023 02:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 16:33:14.496534
- Title: Detecting out-of-distribution text using topological features of
transformer-based language models
- Title(参考訳): 変圧器型言語モデルの位相的特徴を用いた分布外テキストの検出
- Authors: Andres Pollano, Anupam Chaudhuri, Anj Simmons
- Abstract要約: 本研究では,変換器を用いた言語モデルにおける注意マップにトポロジカルデータ解析(TDA)を適用しながら,配布外(OOD)テキストサンプルの検出を試みる。
我々は,変換器を用いた言語モデルであるBERTの分布外検出のためのTDAに基づくアプローチを評価し,BERT CLSの埋め込みに基づく従来のOODアプローチと比較した。
- 参考スコア(独自算出の注目度): 0.6445605125467574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We attempt to detect out-of-distribution (OOD) text samples though applying
Topological Data Analysis (TDA) to attention maps in transformer-based language
models. We evaluate our proposed TDA-based approach for out-of-distribution
detection on BERT, a transformer-based language model, and compare the to a
more traditional OOD approach based on BERT CLS embeddings. We found that our
TDA approach outperforms the CLS embedding approach at distinguishing
in-distribution data (politics and entertainment news articles from HuffPost)
from far out-of-domain samples (IMDB reviews), but its effectiveness
deteriorates with near out-of-domain (CNN/Dailymail) or same-domain (business
news articles from HuffPost) datasets.
- Abstract(参考訳): トランスフォーマチック言語モデルにおける注意マップにトポロジカルデータ解析(tda)を適用しながら,od(out-of-distribution)テキストサンプルの検出を試みる。
我々は,変換器を用いた言語モデルであるBERTの分布外検出のためのTDAに基づくアプローチを評価し,BERT CLSの埋め込みに基づく従来のOODアプローチと比較した。
我々のTDAアプローチは,配信内データ(HuffPostの政治・エンターテイメントニュース記事)とドメイン外サンプル(IMDBレビュー)とを区別するCLS埋め込みアプローチよりも優れていることがわかったが,その効果はドメイン外サンプル(CNN/Dailymail)や同一ドメイン(HuffPostのビジネスニュース記事)で低下する。
関連論文リスト
- Mind the Gap: A Generalized Approach for Cross-Modal Embedding Alignment [0.0]
Retrieval-Augmented Generation (RAG) システムは、意味的ギャップによって異なるテキストモダリティ間でコンテキストを検索する。
本稿では,これらのギャップを効率的に埋める汎用投影法を提案する。
私たちのアプローチでは、トレーニングや推論に最小限のリソースを必要とするため、スピード、正確性、データ効率を重視しています。
論文 参考訳(メタデータ) (2024-10-30T20:28:10Z) - Trajectory Anomaly Detection with Language Models [21.401931052512595]
本稿では,自己回帰因果アテンションモデル(LM-TAD)を用いた軌道異常検出のための新しい手法を提案する。
トラジェクトリをトークンの列として扱うことにより、トラジェクトリ上の確率分布を学習し、高精度な異常位置の同定を可能にする。
本実験は, 合成および実世界の両方のデータセットに対するLM-TADの有効性を実証した。
論文 参考訳(メタデータ) (2024-09-18T17:33:31Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
我々は、意味的テキスト類似性のためのトピックインフォームド離散潜在変数モデルを開発した。
我々のモデルはベクトル量子化による文対表現のための共有潜在空間を学習する。
我々のモデルは意味的テキスト類似性タスクにおいて、いくつかの強力な神経ベースラインを超えることができることを示す。
論文 参考訳(メタデータ) (2022-11-07T15:09:58Z) - QAGAN: Adversarial Approach To Learning Domain Invariant Language
Features [0.76146285961466]
ドメイン不変の特徴を学習するための敵対的学習手法について検討する。
EMスコアが15.2%改善され、ドメイン外の検証データセットでF1スコアが5.6%向上しました。
論文 参考訳(メタデータ) (2022-06-24T17:42:18Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - A Correspondence Variational Autoencoder for Unsupervised Acoustic Word
Embeddings [50.524054820564395]
そこで本稿では,変数分割音声セグメントを固定次元表現にマッピングするための教師なしモデルを提案する。
結果として得られる音響単語の埋め込みは、低リソース言語とゼロリソース言語のための検索、発見、インデックスシステムの基礎を形成することができる。
論文 参考訳(メタデータ) (2020-12-03T19:24:42Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。