Large Language Models in Education: Vision and Opportunities
- URL: http://arxiv.org/abs/2311.13160v1
- Date: Wed, 22 Nov 2023 05:04:20 GMT
- Title: Large Language Models in Education: Vision and Opportunities
- Authors: Wensheng Gan, Zhenlian Qi, Jiayang Wu, Jerry Chun-Wei Lin
- Abstract summary: This article introduces the research background and motivation of large language models (LLMs)
It then discusses the relationship between digital education and EduLLMs and summarizes the current research status of educational large models.
Main contributions are the systematic summary and vision of the research background, motivation, and application of large models for education (LLM4Edu)
- Score: 23.399139761508934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of artificial intelligence technology, large
language models (LLMs) have become a hot research topic. Education plays an
important role in human social development and progress. Traditional education
faces challenges such as individual student differences, insufficient
allocation of teaching resources, and assessment of teaching effectiveness.
Therefore, the applications of LLMs in the field of digital/smart education
have broad prospects. The research on educational large models (EduLLMs) is
constantly evolving, providing new methods and approaches to achieve
personalized learning, intelligent tutoring, and educational assessment goals,
thereby improving the quality of education and the learning experience. This
article aims to investigate and summarize the application of LLMs in smart
education. It first introduces the research background and motivation of LLMs
and explains the essence of LLMs. It then discusses the relationship between
digital education and EduLLMs and summarizes the current research status of
educational large models. The main contributions are the systematic summary and
vision of the research background, motivation, and application of large models
for education (LLM4Edu). By reviewing existing research, this article provides
guidance and insights for educators, researchers, and policy-makers to gain a
deep understanding of the potential and challenges of LLM4Edu. It further
provides guidance for further advancing the development and application of
LLM4Edu, while still facing technical, ethical, and practical challenges
requiring further research and exploration.
Related papers
- Decoding Large-Language Models: A Systematic Overview of Socio-Technical Impacts, Constraints, and Emerging Questions [1.1970409518725493]
The article highlights the application areas that could have a positive impact on society along with the ethical considerations.
It includes responsible development considerations, algorithmic improvements, ethical challenges, and societal implications.
arXiv Detail & Related papers (2024-09-25T14:36:30Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Large Language Models for Education: A Survey [32.42330148200439]
Large language models (LLMs) have been increasingly used in various applications.
The use of LLMs for smart education (LLMEdu) has been a significant strategic direction for countries worldwide.
While LLMs have shown great promise in improving teaching quality, changing education models, and modifying teacher roles, the technologies are still facing several challenges.
arXiv Detail & Related papers (2024-05-12T01:50:01Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - Taking the Next Step with Generative Artificial Intelligence: The Transformative Role of Multimodal Large Language Models in Science Education [13.87944568193996]
Multimodal Large Language Models (MLLMs) are capable of processing multimodal data including text, sound, and visual inputs.
This paper explores the transformative role of MLLMs in central aspects of science education by presenting exemplary innovative learning scenarios.
arXiv Detail & Related papers (2024-01-01T18:11:43Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
Large language models (LLMs) offer possibility for resolving this issue by comprehending individual requests.
This paper reviews the recently emerged LLM research related to educational capabilities, including mathematics, writing, programming, reasoning, and knowledge-based question answering.
arXiv Detail & Related papers (2023-12-27T14:37:32Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - Prototyping the use of Large Language Models (LLMs) for adult learning
content creation at scale [0.6628807224384127]
This paper presents an investigation into the use of Large Language Models (LLMs) in asynchronous course creation.
We developed a course prototype leveraging an LLM, implementing a robust human-in-the-loop process.
Initial findings indicate that taking this approach can indeed facilitate faster content creation without compromising on accuracy or clarity.
arXiv Detail & Related papers (2023-06-02T10:58:05Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.