Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities
- URL: http://arxiv.org/abs/2507.13158v1
- Date: Thu, 17 Jul 2025 14:22:24 GMT
- Title: Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities
- Authors: Hao Sun, Mihaela van der Schaar,
- Abstract summary: This paper provides a review of advances in Large Language Models (LLMs) alignment through the lens of inverse reinforcement learning (IRL)<n>We highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift.
- Score: 62.05713042908654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of Large Language Models (LLMs), alignment has emerged as a fundamental yet challenging problem in the pursuit of more reliable, controllable, and capable machine intelligence. The recent success of reasoning models and conversational AI systems has underscored the critical role of reinforcement learning (RL) in enhancing these systems, driving increased research interest at the intersection of RL and LLM alignment. This paper provides a comprehensive review of recent advances in LLM alignment through the lens of inverse reinforcement learning (IRL), emphasizing the distinctions between RL techniques employed in LLM alignment and those in conventional RL tasks. In particular, we highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift. We begin by introducing fundamental concepts in RL to provide a foundation for readers unfamiliar with the field. We then examine recent advances in this research agenda, discussing key challenges and opportunities in conducting IRL for LLM alignment. Beyond methodological considerations, we explore practical aspects, including datasets, benchmarks, evaluation metrics, infrastructure, and computationally efficient training and inference techniques. Finally, we draw insights from the literature on sparse-reward RL to identify open questions and potential research directions. By synthesizing findings from diverse studies, we aim to provide a structured and critical overview of the field, highlight unresolved challenges, and outline promising future directions for improving LLM alignment through RL and IRL techniques.
Related papers
- A Technical Survey of Reinforcement Learning Techniques for Large Language Models [33.38582292895673]
Reinforcement Learning (RL) has emerged as a transformative approach for aligning and enhancing Large Language Models (LLMs)<n>RLHF remains dominant for alignment, and outcome-based RL such as RLVR significantly improves stepwise reasoning.<n> persistent challenges such as reward hacking, computational costs, and scalable feedback collection underscore the need for continued innovation.
arXiv Detail & Related papers (2025-07-05T19:13:00Z) - Scaling and Beyond: Advancing Spatial Reasoning in MLLMs Requires New Recipes [84.1059652774853]
Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks.<n>Recent studies have exposed critical limitations in their spatial reasoning capabilities.<n>This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world.
arXiv Detail & Related papers (2025-04-21T11:48:39Z) - Improving RL Exploration for LLM Reasoning through Retrospective Replay [45.00643118030677]
We propose a novel algorithm named Retrospective Replay-based Reinforcement Learning (RRL), which introduces a dynamic replay mechanism throughout the training process.<n>RRL enables the model to revisit promising states identified in the early stages, thereby improving its efficiency and effectiveness in exploration.
arXiv Detail & Related papers (2025-04-19T17:40:04Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - LLM Post-Training: A Deep Dive into Reasoning Large Language Models [131.10969986056]
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications.<n>Post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations.
arXiv Detail & Related papers (2025-02-28T18:59:54Z) - Reinforcement Learning Enhanced LLMs: A Survey [45.57586245741664]
We will make a systematic review of the most up-to-date state of knowledge on RL-enhanced large language models (LLMs)<n>Specifically, we detail the basics of RL; (2) introduce popular RL-enhanced LLMs; (3) review researches on two widely-used reward model-based RL techniques: Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning from AI Feedback (RLAIF)
arXiv Detail & Related papers (2024-12-05T16:10:42Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
Large Language Models (LLMs) have an extensive amount of world knowledge, and this has enabled their application in various domains to improve the performance of Natural Language Processing (NLP) tasks.
This has also facilitated a more accessible paradigm of conversation-based interactions between humans and AI systems to solve intended problems.
We show the practicality of our approach through two detailed case studies for "Research Scientist" and "Legal Matter Intake"
arXiv Detail & Related papers (2024-04-29T12:16:08Z) - Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
Large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and high-level task planning.
We propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator.
arXiv Detail & Related papers (2024-03-30T08:28:08Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Pedagogical Alignment of Large Language Models [24.427653091950994]
Large Language Models (LLMs) provide immediate answers rather than guiding students through the problem-solving process.
This paper investigates Learning from Human Preferences (LHP) algorithms to achieve this alignment objective.
arXiv Detail & Related papers (2024-02-07T16:15:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.