論文の概要: Robot at the Mirror: Learning to Imitate via Associating Self-supervised
Models
- arxiv url: http://arxiv.org/abs/2311.13226v1
- Date: Wed, 22 Nov 2023 08:30:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 15:41:47.051981
- Title: Robot at the Mirror: Learning to Imitate via Associating Self-supervised
Models
- Title(参考訳): 鏡に映るロボット:自己監督モデルと関連づけて模倣する学習
- Authors: Andrej L\'u\v{c}ny, Krist\'ina Malinovsk\'a, and Igor Farka\v{s}
- Abstract要約: 我々は、トレーニングや微調整の代わりにアソシエイトを通じて、準備済みの自己教師付きモデルからカスタムモデルを構築するアプローチを導入する。
そこで本研究では,鏡を映し出したヒューマノイドロボットが,知覚した画像から身体の3Dポーズを検出することを実演する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an approach to building a custom model from ready-made
self-supervised models via their associating instead of training and
fine-tuning. We demonstrate it with an example of a humanoid robot looking at
the mirror and learning to detect the 3D pose of its own body from the image it
perceives. To build our model, we first obtain features from the visual input
and the postures of the robot's body via models prepared before the robot's
operation. Then, we map their corresponding latent spaces by a sample-efficient
robot's self-exploration at the mirror. In this way, the robot builds the
solicited 3D pose detector, which quality is immediately perfect on the
acquired samples instead of obtaining the quality gradually. The mapping, which
employs associating the pairs of feature vectors, is then implemented in the
same way as the key-value mechanism of the famous transformer models. Finally,
deploying our model for imitation to a simulated robot allows us to study, tune
up, and systematically evaluate its hyperparameters without the involvement of
the human counterpart, advancing our previous research.
- Abstract(参考訳): 学習や微調整に代えて,自己監督型モデルから独自のモデルを構築する手法を提案する。
そこで本研究では,鏡を映し出したヒューマノイドロボットが,知覚した画像から身体の3Dポーズを検出することを実演する。
このモデルを構築するために,まず,ロボットの操作前に用意されたモデルを用いて,視覚入力とロボットの姿勢から特徴を抽出する。
次に,標本効率の良いロボットの自己爆発を鏡に映し出すことにより,それらの潜在空間をマッピングする。
このようにして、ロボットは、徐々に品質を得るのではなく、取得したサンプルですぐに品質が完璧になる3dポーズ検出器を構築する。
特徴ベクトルのペアを関連づけたマッピングは、有名な変圧器モデルのキー値機構と同じ方法で実装される。
最後に、シミュレーションロボットに模倣するためにモデルを配置することで、人間の関与なしにハイパーパラメータを研究し、調整し、体系的に評価することが可能になります。
関連論文リスト
- Differentiable Robot Rendering [45.23538293501457]
本稿では,ロボット本体の視覚的外観を,その制御パラメータに対して直接微分可能とするロボットレンダリングについて紹介する。
画像からロボットのポーズを復元したり、視覚言語モデルを用いてロボットを制御するなど、その能力と用途を実演する。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Robot See Robot Do: Imitating Articulated Object Manipulation with Monocular 4D Reconstruction [51.49400490437258]
本研究は,1つの単分子RGB人間の実演から音声による物体操作を模倣する手法を開発した。
まず,モノクロ映像から3次元部分運動を復元する4次元微分可能部品モデル(4D-DPM)を提案する。
この4D再構成を前提として、ロボットは物体の軌道を再現し、両腕の動きを計画し、実証された物体部分の動きを誘導する。
両用するYuMiロボットを用いて,4D-DPMの3D追跡精度を実写3D部分軌跡に基づいて評価し,9つのオブジェクトに対してRSRDの物理的実行性能を評価した。
論文 参考訳(メタデータ) (2024-09-26T17:57:16Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - STPOTR: Simultaneous Human Trajectory and Pose Prediction Using a
Non-Autoregressive Transformer for Robot Following Ahead [8.227864212055035]
観測された人間の動作履歴から将来の人間の動作を予測するニューラルネットワークモデルを開発した。
本研究では,自動回帰トランスフォーマアーキテクチャを提案し,その並列特性を利用して,テスト時の高速かつ高精度な予測を行う。
我々のモデルは、最先端の手法に関して、テスト精度と速度の観点からロボット応用に適している。
論文 参考訳(メタデータ) (2022-09-15T20:27:54Z) - On the Origins of Self-Modeling [27.888203008100113]
自己モデリング(Self-Modeling)とは、動物や機械などのエージェントが、自身のダイナミクスの予測モデルを作成する過程である。
本稿では,ロボットの複雑さに対する自己モデリングの利点を定量化する。
論文 参考訳(メタデータ) (2022-09-05T15:27:04Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - Full-Body Visual Self-Modeling of Robot Morphologies [29.76701883250049]
身体の内部計算モデルは、ロボットや動物が行動の計画と制御を行う能力の基礎である。
完全データ駆動型自己モデリングの最近の進歩により、マシンはタスク非依存の相互作用データから直接フォワードキネマティクスを学習できるようになった。
ここでは、フォワードキネマティクスを直接モデル化するのではなく、空間占有クエリに答えることのできる、より有用な自己モデリング形式を提案する。
論文 参考訳(メタデータ) (2021-11-11T18:58:07Z) - Learning a generative model for robot control using visual feedback [7.171234436165255]
本稿では,ロボット制御に視覚フィードバックを取り入れた新しい定式化を提案する。
モデルにおける推論により,特徴のターゲット位置に対応するロボット状態を推測することができる。
本研究では,不正確な制御を行うロボットに対して,握りとタイトな挿入を実行することで,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-03-10T00:34:01Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRICは、ロボットの形態に関する最小限の知識で機能するアプローチである。
本稿では,視覚誘導型3Dポイントリーチ,軌道追従,ロボットとロボットの模倣について紹介する。
論文 参考訳(メタデータ) (2019-12-31T15:45:10Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。