論文の概要: Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus
- arxiv url: http://arxiv.org/abs/2311.13230v1
- Date: Wed, 22 Nov 2023 08:39:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 15:58:14.690629
- Title: Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus
- Title(参考訳): より強い焦点による不確かさに基づく幻覚検出の強化
- Authors: Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng, Yue Zhang, Zheng
Zhang, Chenghu Zhou, Xinbing Wang and Luoyi Fu
- Abstract要約: 大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。
LLMは、ユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。
LLMにおける幻覚を検出するための新しい基準のない不確実性に基づく手法を提案する。
- 参考スコア(独自算出の注目度): 99.33091772494751
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have gained significant popularity for their
impressive performance across diverse fields. However, LLMs are prone to
hallucinate untruthful or nonsensical outputs that fail to meet user
expectations in many real-world applications. Existing works for detecting
hallucinations in LLMs either rely on external knowledge for reference
retrieval or require sampling multiple responses from the LLM for consistency
verification, making these methods costly and inefficient. In this paper, we
propose a novel reference-free, uncertainty-based method for detecting
hallucinations in LLMs. Our approach imitates human focus in factuality
checking from three aspects: 1) focus on the most informative and important
keywords in the given text; 2) focus on the unreliable tokens in historical
context which may lead to a cascade of hallucinations; and 3) focus on the
token properties such as token type and token frequency. Experimental results
on relevant datasets demonstrate the effectiveness of our proposed method,
which achieves state-of-the-art performance across all the evaluation metrics
and eliminates the need for additional information.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。
しかし、LLMは現実の多くのアプリケーションにおいてユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。
LLMの幻覚を検出するための既存の作業は、参照検索のための外部知識に依存するか、一貫性検証のためにLLMから複数の応答をサンプリングする必要がある。
本稿では, LLMにおける幻覚検出のための基準のない, 不確実性に基づく新しい手法を提案する。
私たちのアプローチは,3つの側面から現実性チェックにおける人間の焦点を模倣する。
1) 所定のテキスト中の最も有益で重要なキーワードに注目すること。
2)幻覚のカスケードにつながる可能性がある歴史的文脈における信頼できないトークンに注目し,
3)トークンタイプやトークン頻度といったトークンプロパティに注目します。
提案手法の有効性を検証し,提案手法の有効性を検証し,すべての評価指標の最先端性能を達成し,追加情報の必要性を排除した。
関連論文リスト
- CutPaste&Find: Efficient Multimodal Hallucination Detector with Visual-aid Knowledge Base [29.477973983931083]
LVLM出力の幻覚を検出する軽量でトレーニング不要なフレームワークであるCutPaste&Findを提案する。
私たちのフレームワークの中核は、リッチなエンティティ属性関係と関連するイメージ表現をエンコードするビジュアルエイドの知識ベースです。
類似度スコアを改良するスケーリング係数を導入し, 地中画像とテキストのペアであっても, 最適下アライメントの問題を緩和する。
論文 参考訳(メタデータ) (2025-02-18T07:06:36Z) - Attention-guided Self-reflection for Zero-shot Hallucination Detection in Large Language Models [20.175106988135454]
大規模言語モデル(LLM)におけるゼロショット幻覚検出のためのAGSER(Attention-Guided SElf-Reflection)アプローチを提案する。
AGSER法は注意力を利用して、入力クエリを注意クエリと非注意クエリに分類する。
幻覚を検出する効果に加えて、AGSERは計算オーバーヘッドを著しく減らし、LSMを通過する3つのトークンと2つのトークンを使用する必要がある。
論文 参考訳(メタデータ) (2025-01-17T07:30:01Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
マルチモーダル大規模言語モデル(MLLM)は、視覚言語タスクを前進させる前例のない能力を示した。
本稿では,MLLMにおける幻覚に対処するためのボトムアップ推論フレームワークを提案する。
本フレームワークは、認識レベル情報と認知レベルコモンセンス知識を検証・統合することにより、視覚とテキストの両方の入力における潜在的な問題に体系的に対処する。
論文 参考訳(メタデータ) (2024-12-15T09:10:46Z) - LLM Hallucination Reasoning with Zero-shot Knowledge Test [10.306443936136425]
我々は,LLM生成テキストを3つのカテゴリの1つに分類する新たなタスクであるHalucination Reasoningを導入する。
新たなデータセットを用いた実験により,幻覚推論における本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-11-14T18:55:26Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
LLM(Large Language Models)は、幻覚と呼ばれる不正確な出力を生成する。
本稿では,トークンから得られる4つの数値的特徴と,他の評価者から得られる語彙的確率を用いた教師付き学習手法を提案する。
この方法は有望な結果をもたらし、3つの異なるベンチマークで複数のタスクで最先端の結果を上回る。
論文 参考訳(メタデータ) (2024-05-30T03:00:47Z) - KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking [55.2155025063668]
KnowHaluは、大規模言語モデル(LLM)によって生成されたテキスト中の幻覚を検出する新しいアプローチである
ステップワイズ推論、マルチフォームクエリ、ファクトチェックのためのマルチフォーム知識、フュージョンベースの検出メカニズムを使用する。
評価の結果,KnowHaluは様々なタスクにおける幻覚検出においてSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-04-03T02:52:07Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Knowledge Verification to Nip Hallucination in the Bud [69.79051730580014]
本研究では、アライメントデータに存在する外部知識と基礎LPM内に埋め込まれた固有の知識との矛盾を検証し、最小化することにより、幻覚を緩和する可能性を示す。
本稿では,知識一貫性アライメント(KCA, Knowledge Consistent Alignment)と呼ばれる新しい手法を提案する。
6つのベンチマークで幻覚を減らし, バックボーンとスケールの異なる基礎的LCMを利用することで, KCAの優れた効果を実証した。
論文 参考訳(メタデータ) (2024-01-19T15:39:49Z) - Chainpoll: A high efficacy method for LLM hallucination detection [0.0]
そこで我々はChainPollという幻覚検出手法を紹介した。
我々はまた、最近の研究から幻覚検出指標を評価するためのベンチマークデータセットの洗練されたコレクションであるRealHallも公開した。
論文 参考訳(メタデータ) (2023-10-22T14:45:14Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
大きな言語モデル(LLM)は幻覚を発生させ、ミッションクリティカルなタスクにデプロイすると大きなダメージを与える可能性がある。
本稿では,逆検証に基づく自己チェック手法を提案し,ゼロリソース方式で事実誤りを自動的に検出する。
提案手法と既存のゼロリソース検出手法を2つのデータセット上で実証的に評価した。
論文 参考訳(メタデータ) (2023-10-10T10:14:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。