Unified Domain Adaptive Semantic Segmentation
- URL: http://arxiv.org/abs/2311.13254v3
- Date: Thu, 12 Sep 2024 15:16:24 GMT
- Title: Unified Domain Adaptive Semantic Segmentation
- Authors: Zhe Zhang, Gaochang Wu, Jing Zhang, Xiatian Zhu, Dacheng Tao, Tianyou Chai,
- Abstract summary: Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.
We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.
Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
- Score: 96.74199626935294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at \url{https://github.com/ZHE-SAPI/UDASS}.
Related papers
- Improving Intrusion Detection with Domain-Invariant Representation Learning in Latent Space [4.871119861180455]
We introduce a two-phase representation learning technique using multi-task learning.
We disentangle the latent space by minimizing the mutual information between the prior and latent space.
We assess the model's efficacy across multiple cybersecurity datasets.
arXiv Detail & Related papers (2023-12-28T17:24:13Z) - Towards Full-scene Domain Generalization in Multi-agent Collaborative
Bird's Eye View Segmentation for Connected and Autonomous Driving [54.60458503590669]
We propose a unified domain generalization framework applicable in both training and inference stages of collaborative perception.
We employ an Amplitude Augmentation (AmpAug) method to augment low-frequency image variations, broadening the model's ability to learn.
In the inference phase, we introduce an intra-system domain alignment mechanism to reduce or potentially eliminate the domain discrepancy.
arXiv Detail & Related papers (2023-11-28T12:52:49Z) - Towards Domain-Specific Features Disentanglement for Domain
Generalization [23.13095840134744]
We propose a novel contrastive-based disentanglement method CDDG to exploit the over-looked domain-specific features.
Specifically, CDDG learns to decouple inherent mutually exclusive features by leveraging them in the latent space.
Experiments conducted on various benchmark datasets demonstrate the superiority of our method compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-04T17:51:02Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
Anomaly segmentation plays a pivotal role in identifying atypical objects in images, crucial for hazard detection in autonomous driving systems.
While existing methods demonstrate noteworthy results on synthetic data, they often fail to consider the disparity between synthetic and real-world data domains.
We introduce the Multi-Granularity Cross-Domain Alignment framework, tailored to harmonize features across domains at both the scene and individual sample levels.
arXiv Detail & Related papers (2023-08-16T22:54:49Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
Semi-supervised domain adaptation (SSDA) adapts a learner to a new domain by effectively utilizing source domain data and a few labeled target samples.
We show that the proposed model significantly outperforms SOTA methods in terms of effectiveness and generalisability on SSDA datasets.
arXiv Detail & Related papers (2023-03-30T16:48:28Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
The research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years.
We provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme.
We compare the results of more than 30 representative SFDA methods on three popular classification benchmarks.
arXiv Detail & Related papers (2023-02-23T06:32:09Z) - Amplitude Spectrum Transformation for Open Compound Domain Adaptive
Semantic Segmentation [62.68759523116924]
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting.
We propose a novel feature space Amplitude Spectrum Transformation (AST)
arXiv Detail & Related papers (2022-02-09T05:40:34Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.