論文の概要: Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging
- arxiv url: http://arxiv.org/abs/2311.13319v1
- Date: Wed, 22 Nov 2023 11:15:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 15:33:21.427501
- Title: Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging
- Title(参考訳): 血管セグメンテーションのための深部学習と位相コントラストトモグラフィへの応用
- Authors: Ekin Yagis, Shahab Aslani, Yashvardhan Jain, Yang Zhou, Shahrokh
Rahmani, Joseph Brunet, Alexandre Bellier, Christopher Werlein, Maximilian
Ackermann, Danny Jonigk, Paul Tafforeau, Peter D Lee and Claire Walsh
- Abstract要約: 本稿では,多様な臓器にまたがる機械学習技術の現状を概説する。
我々のゴールは、このトピックの基礎を提供し、新しい画像モダリティで血管セグメンテーションに適用するための堅牢なベースラインモデルを特定することである。
HiP CTは、1ボクセルあたり20mmという前例のない解像度で、完全な臓器の3Dイメージングを可能にする。
- 参考スコア(独自算出の注目度): 33.23991248643144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated blood vessel segmentation is vital for biomedical imaging, as
vessel changes indicate many pathologies. Still, precise segmentation is
difficult due to the complexity of vascular structures, anatomical variations
across patients, the scarcity of annotated public datasets, and the quality of
images. We present a thorough literature review, highlighting the state of
machine learning techniques across diverse organs. Our goal is to provide a
foundation on the topic and identify a robust baseline model for application to
vascular segmentation in a new imaging modality, Hierarchical Phase Contrast
Tomography (HiP CT). Introduced in 2020 at the European Synchrotron Radiation
Facility, HiP CT enables 3D imaging of complete organs at an unprecedented
resolution of ca. 20mm per voxel, with the capability for localized zooms in
selected regions down to 1mm per voxel without sectioning. We have created a
training dataset with double annotator validated vascular data from three
kidneys imaged with HiP CT in the context of the Human Organ Atlas Project.
Finally, utilising the nnU Net model, we conduct experiments to assess the
models performance on both familiar and unseen samples, employing vessel
specific metrics. Our results show that while segmentations yielded reasonably
high scores such as clDice values ranging from 0.82 to 0.88, certain errors
persisted. Large vessels that collapsed due to the lack of hydrostatic pressure
(HiP CT is an ex vivo technique) were segmented poorly. Moreover, decreased
connectivity in finer vessels and higher segmentation errors at vessel
boundaries were observed. Such errors obstruct the understanding of the
structures by interrupting vascular tree connectivity. Through our review and
outputs, we aim to set a benchmark for subsequent model evaluations using
various modalities, especially with the HiP CT imaging database.
- Abstract(参考訳): 血管拡張は多くの病態を示すため、血管分割の自動化は生医学的イメージングに不可欠である。
それでも、血管構造の複雑さ、患者間の解剖学的変異、注釈付き公開データセットの不足、画像の品質のため、正確なセグメンテーションは困難である。
本稿では,様々な臓器にまたがる機械学習技術の現状に注目した,詳細な文献レビューを行う。
本研究の目的は,新しい画像モダリティ,階層型位相コントラストCT(HiP CT)における血管セグメンテーションに適用するための,ロバストなベースラインモデルを提供することである。
2020年に欧州放射光施設で導入されたHiP CTは、完全な臓器の3Dイメージングを可能にする。
1ボクセルあたり20mm, 選択した領域でのズームを1ボクセルあたり1mmまで, 分割せずに行うことができる。
今回我々は,ヒト臓器アトラス計画の文脈で,hip ctで撮影された3つの腎臓の血管データを検証するダブルアノテーションを用いたトレーニングデータセットを作成した。
最後に、nUネットモデルを用いて、親しみやすいサンプルと見知らぬサンプルの両方でモデル性能を評価する実験を行い、容器固有の指標を用いた。
その結果, セグメンテーションは, 0.82 から 0.88 の範囲で clDice 値などの高いスコアが得られたが, 一定の誤差は持続した。
静水圧 (HiP CTは生体外技術) の欠如により崩壊した大型血管は, セグメンテーションが不十分であった。
また,細血管の接続性が低下し,容器境界での分割誤差が高かった。
このようなエラーは、血管樹の接続を中断することで構造を理解するのを妨げる。
レビューとアウトプットを通じて,特にHiP CT画像データベースを用いて,様々なモダリティを用いたその後のモデル評価のためのベンチマークを設定することを目的とする。
関連論文リスト
- Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
本研究は, 連続断面光コヒーレンストモグラフィー画像における神経血管セグメンテーションのための合成エンジンについて述べる。
提案手法は,ラベル合成とラベル・ツー・イメージ変換の2段階からなる。
前者の有効性を,より現実的なトレーニングラベルの集合と比較し,後者を合成ノイズと人工物モデルのアブレーション研究により実証した。
論文 参考訳(メタデータ) (2024-07-01T16:09:07Z) - A label-free and data-free training strategy for vasculature segmentation in serial sectioning OCT data [4.746694624239095]
オプティカル・コヒーレンス・トモグラフィー (OCT) は, 死後神経血管の研究でますます人気が高まっている。
ここでは、深層学習セグメンテーションモデルをトレーニングするために、容器の合成データセットを活用する。
どちらのアプローチも同様のDiceスコアを得るが、偽陽性と偽陰率は非常に異なる。
論文 参考訳(メタデータ) (2024-05-22T15:39:31Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
OCT-Aセグメンテーションデータセット(ROSE)は229枚のOCT-A画像からなり、中心線レベルまたは画素レベルで血管アノテーションを付加する。
次に,スプリットをベースとしたSCF-Net(Coarse-to-Fine vessel segmentation Network)を提案する。
SCF-Netでは、スプリットベース粗いセグメンテーション(SCS)モジュールを最初に導入し、スプリットベースリファインメント(SRN)モジュールを使用して形状・形状を最適化する。
論文 参考訳(メタデータ) (2020-07-10T06:54:19Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。