MergeSFL: Split Federated Learning with Feature Merging and Batch Size Regulation
- URL: http://arxiv.org/abs/2311.13348v2
- Date: Mon, 22 Jul 2024 06:43:13 GMT
- Title: MergeSFL: Split Federated Learning with Feature Merging and Batch Size Regulation
- Authors: Yunming Liao, Yang Xu, Hongli Xu, Lun Wang, Zhiwei Yao, Chunming Qiao,
- Abstract summary: Federated learning (FL) is a technique for edge AI to mine valuable knowledge in edge computing (EC) systems.
We propose a novel SFL framework, termed MergeSFL, by incorporating feature merging and batch size regulation in SFL.
We show that MergeSFL can improve the final model accuracy by 5.82% to 26.22%, with a speedup by about 1.74x to 4.14x, compared to the baselines.
- Score: 27.159538773609917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, federated learning (FL) has emerged as a popular technique for edge AI to mine valuable knowledge in edge computing (EC) systems. To mitigate the computing/communication burden on resource-constrained workers and protect model privacy, split federated learning (SFL) has been released by integrating both data and model parallelism. Despite resource limitations, SFL still faces two other critical challenges in EC, i.e., statistical heterogeneity and system heterogeneity. To address these challenges, we propose a novel SFL framework, termed MergeSFL, by incorporating feature merging and batch size regulation in SFL. Concretely, feature merging aims to merge the features from workers into a mixed feature sequence, which is approximately equivalent to the features derived from IID data and is employed to promote model accuracy. While batch size regulation aims to assign diverse and suitable batch sizes for heterogeneous workers to improve training efficiency. Moreover, MergeSFL explores to jointly optimize these two strategies upon their coupled relationship to better enhance the performance of SFL. Extensive experiments are conducted on a physical platform with 80 NVIDIA Jetson edge devices, and the experimental results show that MergeSFL can improve the final model accuracy by 5.82% to 26.22%, with a speedup by about 1.74x to 4.14x, compared to the baselines.
Related papers
- R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: a communication-efficient FL framework is proposed to optimize sparse model structures with low computational overhead.
Experiments show that SpaFL improves accuracy while requiring much less communication and computing resources compared to sparse baselines.
arXiv Detail & Related papers (2024-06-01T13:10:35Z) - Robust Model Aggregation for Heterogeneous Federated Learning: Analysis and Optimizations [35.58487905412915]
We propose a time-driven SFL (T-SFL) framework for heterogeneous systems.
To evaluate the learning performance of T-SFL, we provide an upper bound on the global loss function.
We develop a discriminative model selection algorithm that removes local models from clients whose number of iterations falls below a predetermined threshold.
arXiv Detail & Related papers (2024-05-11T11:55:26Z) - AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks [15.195798715517315]
Split federated learning (SFL) is a promising solution by of floading the primary training workload to a server via model partitioning.
We propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems.
arXiv Detail & Related papers (2024-03-19T19:05:24Z) - Have Your Cake and Eat It Too: Toward Efficient and Accurate Split Federated Learning [25.47111107054497]
Split Federated Learning (SFL) is promising in AIoT systems.
SFL suffers from the challenges of low inference accuracy and low efficiency.
This paper presents a novel SFL approach, named Sliding Split Federated Learning (S$2$FL)
arXiv Detail & Related papers (2023-11-22T05:09:50Z) - Convergence Analysis of Sequential Federated Learning on Heterogeneous Data [5.872735527071425]
There are two categories of methods in Federated Learning (FL) for joint training across multiple clients: i) parallel FL (PFL), where clients train models in a parallel manner; and ii) FL (SFL) where clients train in a sequential manner.
In this paper, we establish the convergence guarantees SFL on heterogeneous data is still lacking.
Experimental results validate the counterintuitive analysis result that SFL outperforms PFL on extremely heterogeneous data in cross-device settings.
arXiv Detail & Related papers (2023-11-06T14:48:51Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - SemiSFL: Split Federated Learning on Unlabeled and Non-IID Data [34.49090830845118]
Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data at the network edge.
We propose a novel Semi-supervised SFL system, termed SemiSFL, which incorporates clustering regularization to perform SFL with unlabeled and non-IID client data.
Our system provides a 3.8x speed-up in training time, reduces the communication cost by about 70.3% while reaching the target accuracy, and achieves up to 5.8% improvement in accuracy under non-IID scenarios.
arXiv Detail & Related papers (2023-07-29T02:35:37Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
We propose hierarchical PFL (HPFL), an algorithm for deploying PFL over massive MEC networks.
HPFL combines the objectives of training loss minimization and round latency minimization while jointly determining the optimal bandwidth allocation.
arXiv Detail & Related papers (2023-03-19T06:00:05Z) - Semi-Synchronous Personalized Federated Learning over Mobile Edge
Networks [88.50555581186799]
We propose a semi-synchronous PFL algorithm, termed as Semi-Synchronous Personalized FederatedAveraging (PerFedS$2$), over mobile edge networks.
We derive an upper bound of the convergence rate of PerFedS2 in terms of the number of participants per global round and the number of rounds.
Experimental results verify the effectiveness of PerFedS2 in saving training time as well as guaranteeing the convergence of training loss.
arXiv Detail & Related papers (2022-09-27T02:12:43Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.