Robust Model Aggregation for Heterogeneous Federated Learning: Analysis and Optimizations
- URL: http://arxiv.org/abs/2405.06993v1
- Date: Sat, 11 May 2024 11:55:26 GMT
- Title: Robust Model Aggregation for Heterogeneous Federated Learning: Analysis and Optimizations
- Authors: Yumeng Shao, Jun Li, Long Shi, Kang Wei, Ming Ding, Qianmu Li, Zengxiang Li, Wen Chen, Shi Jin,
- Abstract summary: We propose a time-driven SFL (T-SFL) framework for heterogeneous systems.
To evaluate the learning performance of T-SFL, we provide an upper bound on the global loss function.
We develop a discriminative model selection algorithm that removes local models from clients whose number of iterations falls below a predetermined threshold.
- Score: 35.58487905412915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional synchronous federated learning (SFL) frameworks suffer from performance degradation in heterogeneous systems due to imbalanced local data size and diverse computing power on the client side. To address this problem, asynchronous FL (AFL) and semi-asynchronous FL have been proposed to recover the performance loss by allowing asynchronous aggregation. However, asynchronous aggregation incurs a new problem of inconsistency between local updates and global updates. Motivated by the issues of conventional SFL and AFL, we first propose a time-driven SFL (T-SFL) framework for heterogeneous systems. The core idea of T-SFL is that the server aggregates the models from different clients, each with varying numbers of iterations, at regular time intervals. To evaluate the learning performance of T-SFL, we provide an upper bound on the global loss function. Further, we optimize the aggregation weights to minimize the developed upper bound. Then, we develop a discriminative model selection (DMS) algorithm that removes local models from clients whose number of iterations falls below a predetermined threshold. In particular, this algorithm ensures that each client's aggregation weight accurately reflects its true contribution to the global model update, thereby improving the efficiency and robustness of the system. To validate the effectiveness of T-SFL with the DMS algorithm, we conduct extensive experiments using several popular datasets including MNIST, Cifar-10, Fashion-MNIST, and SVHN. The experimental results demonstrate that T-SFL with the DMS algorithm can reduce the latency of conventional SFL by 50\%, while achieving an average 3\% improvement in learning accuracy over state-of-the-art AFL algorithms.
Related papers
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks [15.195798715517315]
Split federated learning (SFL) is a promising solution by of floading the primary training workload to a server via model partitioning.
We propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems.
arXiv Detail & Related papers (2024-03-19T19:05:24Z) - Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
We propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation.
We show that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
arXiv Detail & Related papers (2023-11-03T13:34:44Z) - Delay-Aware Hierarchical Federated Learning [7.292078085289465]
The paper introduces delay-aware hierarchical federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training.
During global synchronization, the cloud server consolidates local models with an outdated global model using a convex control algorithm.
Numerical evaluations show DFL's superior performance in terms of faster global model, reduced convergence resource, and evaluations against communication delays.
arXiv Detail & Related papers (2023-03-22T09:23:29Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
We propose hierarchical PFL (HPFL), an algorithm for deploying PFL over massive MEC networks.
HPFL combines the objectives of training loss minimization and round latency minimization while jointly determining the optimal bandwidth allocation.
arXiv Detail & Related papers (2023-03-19T06:00:05Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Semi-Synchronous Personalized Federated Learning over Mobile Edge
Networks [88.50555581186799]
We propose a semi-synchronous PFL algorithm, termed as Semi-Synchronous Personalized FederatedAveraging (PerFedS$2$), over mobile edge networks.
We derive an upper bound of the convergence rate of PerFedS2 in terms of the number of participants per global round and the number of rounds.
Experimental results verify the effectiveness of PerFedS2 in saving training time as well as guaranteeing the convergence of training loss.
arXiv Detail & Related papers (2022-09-27T02:12:43Z) - Time-triggered Federated Learning over Wireless Networks [48.389824560183776]
We present a time-triggered FL algorithm (TT-Fed) over wireless networks.
Our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively.
arXiv Detail & Related papers (2022-04-26T16:37:29Z) - Stragglers Are Not Disaster: A Hybrid Federated Learning Algorithm with
Delayed Gradients [21.63719641718363]
Federated learning (FL) is a new machine learning framework which trains a joint model across a large amount of decentralized computing devices.
This paper presents a novel FL algorithm, namely Hybrid Federated Learning (HFL), to achieve a learning balance in efficiency and effectiveness.
arXiv Detail & Related papers (2021-02-12T02:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.