A Comparative Analysis Between SciTokens, Verifiable Credentials, and
Smart Contracts: Novel Approaches for Authentication and Secure Access to
Scientific Data
- URL: http://arxiv.org/abs/2311.13422v1
- Date: Mon, 28 Aug 2023 18:01:37 GMT
- Title: A Comparative Analysis Between SciTokens, Verifiable Credentials, and
Smart Contracts: Novel Approaches for Authentication and Secure Access to
Scientific Data
- Authors: Md Jobair Hossain Faruk, Bilash Saha, Jim Basney
- Abstract summary: Managing and exchanging sensitive information securely is a paramount concern for the scientific and cybersecurity community.
This research paper presents a comparative analysis of three novel approaches for authenticating and securing access to scientific data.
- Score: 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Managing and exchanging sensitive information securely is a paramount concern
for the scientific and cybersecurity community. The increasing reliance on
computing workflows and digital data transactions requires ensuring that
sensitive information is protected from unauthorized access, tampering, or
misuse. This research paper presents a comparative analysis of three novel
approaches for authenticating and securing access to scientific data:
SciTokens, Verifiable Credentials, and Smart Contracts. The aim of this study
is to investigate the strengths and weaknesses of each approach from trust,
revocation, privacy, and security perspectives. We examine the technical
features and privacy and security mechanisms of each technology and provide a
comparative synthesis with the proposed model. Through our analysis, we
demonstrate that each technology offers unique advantages and limitations, and
the integration of these technologies can lead to more secure and efficient
solutions for authentication and access to scientific data.
Related papers
- Secure Computation and Trustless Data Intermediaries in Data Spaces [0.44998333629984877]
This paper explores the integration of advanced cryptographic techniques for secure computation in data spaces.
We exploit the introduced secure methods, i.e. Secure Multi-Party Computation (MPC) and Fully Homomorphic Encryption (FHE)
We present solutions through real-world use cases, including air traffic management, manufacturing, and secondary data use.
arXiv Detail & Related papers (2024-10-21T19:10:53Z) - Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
This paper presents a privacy-preserving framework for genomic research, developed in collaboration with Lynx.MD.
The framework addresses critical cybersecurity and privacy challenges, enabling the privacy-preserving sharing and analysis of genomic data.
Implementing the framework within Lynx.MD involves encoding genomic data into binary formats and applying noise through controlled perturbation techniques.
arXiv Detail & Related papers (2024-07-12T05:43:13Z) - Vulnerability Detection in Smart Contracts: A Comprehensive Survey [10.076412566428756]
This study examines the potential of machine learning techniques to improve the detection and mitigation of vulnerabilities in smart contracts.
We analysed 88 articles published between 2018 and 2023 from the following databases: IEEE, ACM, ScienceDirect, Scopus, and Google Scholar.
The findings reveal that classical machine learning techniques, including KNN, RF, DT, XG-Boost, and SVM, outperform static tools in vulnerability detection.
arXiv Detail & Related papers (2024-07-08T11:51:15Z) - Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives [48.48294460952039]
This survey offers comprehensive descriptions of the privacy, security, and fairness issues in federated learning.
We contend that there exists a trade-off between privacy and fairness and between security and sharing.
arXiv Detail & Related papers (2024-06-16T10:31:45Z) - Measuring Technological Convergence in Encryption Technologies with
Proximity Indices: A Text Mining and Bibliometric Analysis using OpenAlex [46.3643544723237]
This study identifies technological convergence among emerging technologies in cybersecurity.
The proposed method integrates text mining and bibliometric analyses to formulate and predict technological proximity indices.
Our case study findings highlight a significant convergence between blockchain and public-key cryptography, evidenced by the increasing proximity indices.
arXiv Detail & Related papers (2024-03-03T20:03:03Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.