AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations
- URL: http://arxiv.org/abs/2311.13538v5
- Date: Mon, 07 Oct 2024 09:11:49 GMT
- Title: AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations
- Authors: Zhicheng Yang, Yinya Huang, Jing Xiong, Liang Feng, Xiaodan Liang, Yiwei Wang, Jing Tang,
- Abstract summary: Alignedcot is an in-context learning technique for invoking Large Language Models.
It achieves consistent and correct step-wise prompts in zero-shot scenarios.
We conduct experiments on mathematical reasoning and commonsense reasoning.
- Score: 52.43593893122206
- License:
- Abstract: Large Language Models prompting, such as using in-context demonstrations, is a mainstream technique for invoking LLMs to perform high-performance and solid complex reasoning (e.g., mathematical reasoning, commonsense reasoning), and has the potential for further human-machine collaborative scientific findings. However, current LLMs are delicate and elusive in prompt words and styles. And there is an unseen gap between LLM understanding and human-written prompts. This paper introduces Alignedcot, an LLM-acquainted prompting technique that includes proficient ``native-speaking'' in in-context learning for the LLMs. Specifically, it achieves consistent and correct step-wise prompts in zero-shot scenarios by progressively probing, refining, and formatting the LLM chain of thoughts so that free from handcrafted few-shot demonstrations while maintaining the prompt quality. We conduct experiments on mathematical reasoning and commonsense reasoning. We find that LLMs with Alignedcot perform significantly superior to them with human-crafted demonstrations. We further apply Alignedcot for rewriting the GSM8K training set, resulting in a GSM8K-Align dataset. We observe its benefits for retrieval augmented generation. The code and data can be found at https://github.com/yangzhch6/AlignedCoT.
Related papers
- LLMs' Understanding of Natural Language Revealed [0.0]
Large language models (LLMs) are the result of a massive experiment in bottom-up, data-driven reverse engineering of language at scale.
We will focus on testing LLMs for their language understanding capabilities, their supposed forte.
arXiv Detail & Related papers (2024-07-29T01:21:11Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
Large Language Models (LLMs) produce inaccurate outputs, also known as hallucinations.
This paper introduces a supervised learning approach employing only four numerical features derived from tokens and vocabulary probabilities obtained from other evaluators.
The method yields promising results, surpassing state-of-the-art outcomes in multiple tasks across three different benchmarks.
arXiv Detail & Related papers (2024-05-30T03:00:47Z) - "Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing [10.20632187568563]
Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs)
In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations.
We provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs.
We propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt.
arXiv Detail & Related papers (2024-03-27T19:45:09Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
We propose a FaLlacy Understanding Benchmark (FLUB) containing cunning texts that are easy for humans to understand but difficult for models to grasp.
Specifically, the cunning texts that FLUB focuses on mainly consist of the tricky, humorous, and misleading texts collected from the real internet environment.
Based on FLUB, we investigate the performance of multiple representative and advanced LLMs.
arXiv Detail & Related papers (2024-02-16T22:12:53Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
Large language models (LLMs) have made significant advancements in natural language processing and are concurrently extending the language ability to other modalities, such as speech and vision.
We conduct a comprehensive empirical exploration of boosting LLMs with the ability to generate speech, by combining pre-trained LLM LLaMA/OPT and text-to-speech synthesis model VALL-E.
We compare three integration methods between LLMs and speech models, including directly fine-tuned LLMs, superposed layers of LLMs and VALL-E, and coupled LLMs and VALL-E using LLMs as a powerful text encoder
arXiv Detail & Related papers (2023-12-30T14:20:04Z) - A Survey on Prompting Techniques in LLMs [0.0]
Autoregressive Large Language Models have transformed the landscape of Natural Language Processing.
We present a taxonomy of existing literature on prompting techniques and provide a concise survey based on this taxonomy.
We identify some open problems in the realm of prompting in autoregressive LLMs which could serve as a direction for future research.
arXiv Detail & Related papers (2023-11-28T17:56:34Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Can Large Language Models Transform Computational Social Science? [79.62471267510963]
Large Language Models (LLMs) are capable of performing many language processing tasks zero-shot (without training data)
This work provides a road map for using LLMs as Computational Social Science tools.
arXiv Detail & Related papers (2023-04-12T17:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.