LLMs' Understanding of Natural Language Revealed
- URL: http://arxiv.org/abs/2407.19630v2
- Date: Fri, 2 Aug 2024 11:26:12 GMT
- Title: LLMs' Understanding of Natural Language Revealed
- Authors: Walid S. Saba,
- Abstract summary: Large language models (LLMs) are the result of a massive experiment in bottom-up, data-driven reverse engineering of language at scale.
We will focus on testing LLMs for their language understanding capabilities, their supposed forte.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are the result of a massive experiment in bottom-up, data-driven reverse engineering of language at scale. Despite their utility in a number of downstream NLP tasks, ample research has shown that LLMs are incapable of performing reasoning in tasks that require quantification over and the manipulation of symbolic variables (e.g., planning and problem solving); see for example [25][26]. In this document, however, we will focus on testing LLMs for their language understanding capabilities, their supposed forte. As we will show here, the language understanding capabilities of LLMs have been widely exaggerated. While LLMs have proven to generate human-like coherent language (since that's how they were designed), their language understanding capabilities have not been properly tested. In particular, we believe that the language understanding capabilities of LLMs should be tested by performing an operation that is the opposite of 'text generation' and specifically by giving the LLM snippets of text as input and then querying what the LLM "understood". As we show here, when doing so it will become apparent that LLMs do not truly understand language, beyond very superficial inferences that are essentially the byproduct of the memorization of massive amounts of ingested text.
Related papers
- Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - Caveat Lector: Large Language Models in Legal Practice [0.0]
The fascination with large language models derives from the fact that many users lack the expertise to evaluate the quality of the generated text.
The dangerous combination of fluency and superficial plausibility leads to the temptation to trust the generated text and creates the risk of overreliance.
arXiv Detail & Related papers (2024-03-14T08:19:41Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcot is an in-context learning technique for invoking Large Language Models.
It achieves consistent and correct step-wise prompts in zero-shot scenarios.
We conduct experiments on mathematical reasoning and commonsense reasoning.
arXiv Detail & Related papers (2023-11-22T17:24:21Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text.
This position paper critically assesses three points recurring in critiques of LLM capacities.
We outline a pragmatic perspective on the issue of real' understanding and intentionality in LLMs.
arXiv Detail & Related papers (2023-10-30T15:51:04Z) - Limits for Learning with Language Models [4.20859414811553]
We show that large language models (LLMs) are unable to learn concepts beyond the first level of the Borel Hierarchy.
LLMs will continue to operate without formal guarantees on tasks that require entailments and deep linguistic understanding.
arXiv Detail & Related papers (2023-06-21T12:11:31Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z) - Translating Natural Language to Planning Goals with Large-Language
Models [19.738395237639136]
Recent large language models (LLMs) have demonstrated remarkable performance on a variety of natural language processing (NLP) tasks.
Our central question is whether LLMs are able to translate goals specified in natural language to a structured planning language.
Our empirical results on GPT 3.5 variants show that LLMs are much better suited towards translation rather than planning.
arXiv Detail & Related papers (2023-02-10T09:17:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.