A Unified Framework for Trace-induced Quantum Kernels
- URL: http://arxiv.org/abs/2311.13552v1
- Date: Wed, 22 Nov 2023 17:50:00 GMT
- Title: A Unified Framework for Trace-induced Quantum Kernels
- Authors: Beng Yee Gan, Daniel Leykam, Supanut Thanasilp
- Abstract summary: Quantum kernel methods are promising candidates for achieving a practical quantum advantage for certain machine learning tasks.
In this work we combine all trace-induced quantum kernels into a common framework.
We show numerically that models based on local projected kernels can achieve comparable performance to the global fidelity quantum kernel.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum kernel methods are promising candidates for achieving a practical
quantum advantage for certain machine learning tasks. Similar to classical
machine learning, an exact form of a quantum kernel is expected to have a great
impact on the model performance. In this work we combine all trace-induced
quantum kernels, including the commonly-used global fidelity and local
projected quantum kernels, into a common framework. We show how generalized
trace-induced quantum kernels can be constructed as combinations of the
fundamental building blocks we coin "Lego" kernels, which impose an inductive
bias on the resulting quantum models. We relate the expressive power and
generalization ability to the number of non-zero weight Lego kernels and
propose a systematic approach to increase the complexity of a quantum kernel
model, leading to a new form of the local projected kernels that require fewer
quantum resources in terms of the number of quantum gates and measurement
shots. We show numerically that models based on local projected kernels can
achieve comparable performance to the global fidelity quantum kernel. Our work
unifies existing quantum kernels and provides a systematic framework to compare
their properties.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - A Kerr kernel quantum learning machine [0.0]
We propose a quantum hardware kernel implementation scheme based on superconducting quantum circuits.
The scheme does not use qubits or quantum circuits but rather exploits the analogue features of Kerr modes.
arXiv Detail & Related papers (2024-04-02T09:50:33Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum-Classical Multiple Kernel Learning [0.0]
Kernel methods in machine learning is one area where such improvements could be realized in the future.
Small and noisy quantum computers can evaluate classically-parametric quantum kernels that capture unique notions of similarity in data.
We consider pairwise combinations of classical, quantum-quantum, quantum-classical and QC kernels in the context of multiple kernel (MKL)
We show this approach to be effective for enhancing various metrics performance in an MKL setting.
arXiv Detail & Related papers (2023-05-28T12:29:04Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Numerical evidence against advantage with quantum fidelity kernels on
classical data [12.621805903645711]
We show that quantum kernels suffer from exponential "flattening" of the spectrum as the number of qubits grows.
We provide extensive numerical evidence for this phenomenon utilizing multiple previously studied quantum feature maps and both synthetic and real data.
Our results show that unless novel techniques are developed to control the inductive bias of quantum kernels, they are unlikely to provide a quantum advantage on classical data.
arXiv Detail & Related papers (2022-11-29T19:23:11Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum machine learning models are kernel methods [0.0]
This technical manuscript summarises, formalises and extends the link by systematically rephrasing quantum models as a kernel method.
It shows that most near-term and fault-tolerant quantum models can be replaced by a general support vector machine.
In particular, kernel-based training is guaranteed to find better or equally good quantum models than variational circuit training.
arXiv Detail & Related papers (2021-01-26T19:00:04Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - On quantum ensembles of quantum classifiers [0.0]
Quantum machine learning seeks to exploit the underlying nature of a quantum computer to enhance machine learning techniques.
A specific implementation of the quantum ensemble of quantum classifiers, called the accuracy-weighted quantum ensemble, can be fully dequantised.
On the other hand, the general quantum ensemble framework is shown to contain the well-known Deutsch-Jozsa algorithm that notably provides a quantum speedup.
arXiv Detail & Related papers (2020-01-29T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.