論文の概要: Ball Mill Fault Prediction Based on Deep Convolutional Auto-Encoding
Network
- arxiv url: http://arxiv.org/abs/2311.13571v1
- Date: Thu, 9 Nov 2023 17:49:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 00:24:19.043856
- Title: Ball Mill Fault Prediction Based on Deep Convolutional Auto-Encoding
Network
- Title(参考訳): deep convolutional auto-encoding networkに基づくボールミル故障予測
- Authors: Xinkun Ai, Kun Liu, Wei Zheng, Yonggang Fan, Xinwu Wu, Peilong Zhang,
LiYe Wang, JanFeng Zhu, Yuan Pan
- Abstract要約: 本稿では,深部畳み込み自己符号化ニューラルネットワーク(DCAN)を用いた異常検出手法を提案する。
提案手法は,教師付き学習手法でしばしば発生するラベル付け問題やデータ不均衡といった課題を克服し,通常の訓練中に収集した振動データを活用する。
本稿では, 武漢鉄鉄資源グループのボールミル軸受からのデータと, NASAの軸受振動データセットからのデータを利用して, 異常検出のためのDCANに基づく異常検出モデルの実用化について述べる。
- 参考スコア(独自算出の注目度): 3.673613706096849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ball mills play a critical role in modern mining operations, making their
bearing failures a significant concern due to the potential loss of production
efficiency and economic consequences. This paper presents an anomaly detection
method based on Deep Convolutional Auto-encoding Neural Networks (DCAN) for
addressing the issue of ball mill bearing fault detection. The proposed
approach leverages vibration data collected during normal operation for
training, overcoming challenges such as labeling issues and data imbalance
often encountered in supervised learning methods. DCAN includes the modules of
convolutional feature extraction and transposed convolutional feature
reconstruction, demonstrating exceptional capabilities in signal processing and
feature extraction. Additionally, the paper describes the practical deployment
of the DCAN-based anomaly detection model for bearing fault detection,
utilizing data from the ball mill bearings of Wuhan Iron & Steel Resources
Group and fault data from NASA's bearing vibration dataset. Experimental
results validate the DCAN model's reliability in recognizing fault vibration
patterns. This method holds promise for enhancing bearing fault detection
efficiency, reducing production interruptions, and lowering maintenance costs.
- Abstract(参考訳): ボールミルは現代の鉱業で重要な役割を担っており、生産効率の低下と経済的な影響が懸念されている。
本稿では,深部畳み込み自己符号化ニューラルネットワーク(DCAN)を用いた異常検出手法を提案する。
提案手法は,教師付き学習手法でしばしば発生するラベル付け問題やデータ不均衡といった課題を克服し,通常の訓練中に収集した振動データを活用する。
DCANは、畳み込み特徴抽出と転置畳み込み特徴再構成のモジュールを含み、信号処理と特徴抽出において例外的な能力を示す。
さらに、武漢鉄鉄資源グループのボールミル軸受からのデータとNASAの軸受振動データセットからのデータを利用して、異常検出のためのDCANに基づく異常検出モデルの実用的展開について述べる。
実験の結果,dcanモデルの故障振動パターン認識における信頼性が検証された。
この方法は、ベアリング故障検出効率の向上、生産中断の低減、メンテナンスコストの低減を約束する。
関連論文リスト
- Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - A Closer Look at Bearing Fault Classification Approaches [1.9531938396288886]
近年,転がり軸受の異常診断が注目されている。
近年の技術進歩により、これらの資産の健全性を大規模に監視できるようになった。
近年,転がり軸受の異常診断が注目されている。
論文 参考訳(メタデータ) (2023-09-29T06:11:11Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Non-contact Sensing for Anomaly Detection in Wind Turbine Blades: A
focus-SVDD with Complex-Valued Auto-Encoder Approach [2.967390112155113]
我々は、FMCWレーダを非破壊検知モードとして利用する製造の品質保証を強化する。
焦点支援ベクトルデータ記述(focus-SVDD)と呼ばれる新しい異常検出手法を提案する。
提案手法の有効性は, 収集データへの適用を通して実証する。
論文 参考訳(メタデータ) (2023-06-19T09:54:34Z) - Novel features for the detection of bearing faults in railway vehicles [88.89591720652352]
我々は,Mel-Frequency Cepstral Coefficients (MFCCs) とAmplitude Modulation Spectrogram (AMS) から抽出した特徴を,軸受欠陥の検出のための特徴として紹介する。
論文 参考訳(メタデータ) (2023-04-14T10:09:50Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - A Vision Transformer-Based Approach to Bearing Fault Classification via
Vibration Signals [4.287341231968003]
本研究では、現状のViT(Vision Transformer)を用いて、ベアリング欠陥を分類する。
このモデル全体の精度は98.8%に達した。
論文 参考訳(メタデータ) (2022-08-15T08:37:30Z) - A Multi-size Kernel based Adaptive Convolutional Neural Network for
Bearing Fault Diagnosis [5.811146610419976]
マルチサイズカーネルを用いた適応畳み込みニューラルネットワーク(MSKACNN)と呼ばれる軸受振動特性に基づくデータ駆動型診断アルゴリズムを提案する。
MSKACNNは振動特徴学習と信号分類機能を提供し、ベアリング障害を特定し解析する。
論文 参考訳(メタデータ) (2022-03-29T06:43:30Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Detecting Faults during Automatic Screwdriving: A Dataset and Use Case
of Anomaly Detection for Automatic Screwdriving [80.6725125503521]
障害検出に機械学習(ML)を使用したデータ駆動型アプローチが最近注目されている。
本稿では,自動スクリュー運転時の故障検出にMLモデルを用いた場合について述べる。
論文 参考訳(メタデータ) (2021-07-05T11:46:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。