Covariance alignment: from maximum likelihood estimation to
Gromov-Wasserstein
- URL: http://arxiv.org/abs/2311.13595v1
- Date: Wed, 22 Nov 2023 18:55:27 GMT
- Title: Covariance alignment: from maximum likelihood estimation to
Gromov-Wasserstein
- Authors: Yanjun Han, Philippe Rigollet, George Stepaniants
- Abstract summary: We show that the celebrated Gromov-Wasserstein algorithm from optimal transport is also minimax optimal.
These results give the first statistical justification for the deployment of the Gromov-Wasserstein algorithm in practice.
- Score: 27.2585517709102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature alignment methods are used in many scientific disciplines for data
pooling, annotation, and comparison. As an instance of a permutation learning
problem, feature alignment presents significant statistical and computational
challenges. In this work, we propose the covariance alignment model to study
and compare various alignment methods and establish a minimax lower bound for
covariance alignment that has a non-standard dimension scaling because of the
presence of a nuisance parameter. This lower bound is in fact minimax optimal
and is achieved by a natural quasi MLE. However, this estimator involves a
search over all permutations which is computationally infeasible even when the
problem has moderate size. To overcome this limitation, we show that the
celebrated Gromov-Wasserstein algorithm from optimal transport which is more
amenable to fast implementation even on large-scale problems is also minimax
optimal. These results give the first statistical justification for the
deployment of the Gromov-Wasserstein algorithm in practice.
Related papers
- Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Approximative Algorithms for Multi-Marginal Optimal Transport and
Free-Support Wasserstein Barycenters [0.0]
We present two algorithms to approximate the solution of multi-marginal optimal transport (MOT) with squared Euclidean costs for $N$ discrete probability measures.
They are fast, memory-efficient and easy to implement and can be used with any sparse OT solver as a black box.
arXiv Detail & Related papers (2022-02-02T10:59:54Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
We consider active learning for binary classification in the agnostic pool-based setting.
Our algorithm is superior to state of the art active learning algorithms on image classification datasets.
arXiv Detail & Related papers (2021-05-13T18:24:30Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - An Empirical Process Approach to the Union Bound: Practical Algorithms
for Combinatorial and Linear Bandits [34.06611065493047]
This paper proposes near-optimal algorithms for the pure-exploration linear bandit problem in the fixed confidence and fixed budget settings.
We provide an algorithm whose sample complexity scales with the geometry of the instance and avoids an explicit union bound over the number of arms.
We also propose the first algorithm for linear bandits in the the fixed budget setting.
arXiv Detail & Related papers (2020-06-21T00:56:33Z) - Unified Analysis of Stochastic Gradient Methods for Composite Convex and
Smooth Optimization [15.82816385434718]
We present a unified theorem for the convergence analysis of gradient algorithms for minimizing a smooth and convex loss plus a convex regularizer.
We do this by extending the unified analysis of Gorbunov, Hanzely & Richt'arik ( 2020) and dropping the requirement that the loss function be strongly convex.
Our unified analysis applies to a host of existing algorithms such as proximal SGD, variance reduced methods, quantization and some coordinate descent type methods.
arXiv Detail & Related papers (2020-06-20T13:40:27Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Stochastic Optimization for Regularized Wasserstein Estimators [10.194798773447879]
We introduce an algorithm to solve a regularized version of the problem of Wasserstein estimators gradient, with a time per step which is sublinear in the natural dimensions.
We show that this algorithm can be extended to other tasks, including estimation of Wasserstein barycenters.
arXiv Detail & Related papers (2020-02-20T12:04:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.