TDiffDe: A Truncated Diffusion Model for Remote Sensing Hyperspectral
Image Denoising
- URL: http://arxiv.org/abs/2311.13622v1
- Date: Wed, 22 Nov 2023 08:49:08 GMT
- Title: TDiffDe: A Truncated Diffusion Model for Remote Sensing Hyperspectral
Image Denoising
- Authors: Jiang He, Yajie Li, Jie L, Qiangqiang Yuan
- Abstract summary: We propose a truncated diffusion model, called TDiffDe, to recover the useful information in hyperspectral images gradually.
Rather than starting from a pure noise, the input data contains image information in hyperspectral image denoising.
- Score: 5.978703842488647
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hyperspectral images play a crucial role in precision agriculture,
environmental monitoring or ecological analysis. However, due to sensor
equipment and the imaging environment, the observed hyperspectral images are
often inevitably corrupted by various noise. In this study, we proposed a
truncated diffusion model, called TDiffDe, to recover the useful information in
hyperspectral images gradually. Rather than starting from a pure noise, the
input data contains image information in hyperspectral image denoising. Thus,
we cut the trained diffusion model from small steps to avoid the destroy of
valid information.
Related papers
- DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
We propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts.
We collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process.
The learned artifact detector is then involved in the second stage to tune the diffusion model through assigning a per-pixel confidence map for each image.
arXiv Detail & Related papers (2025-01-21T18:56:41Z) - Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model [58.694932010573346]
Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis.
We propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images.
arXiv Detail & Related papers (2024-12-10T15:25:18Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - RSHazeDiff: A Unified Fourier-aware Diffusion Model for Remote Sensing Image Dehazing [32.16602874389847]
Haze severely degrades the visual quality of remote sensing images.
We propose a novel unified Fourier-aware diffusion model for remote sensing image dehazing, termed RSHazeDiff.
Experiments on both synthetic and real-world benchmarks validate the favorable performance of RSHazeDiff over state-of-the-art methods.
arXiv Detail & Related papers (2024-05-15T04:22:27Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - A Conditional Denoising Diffusion Probabilistic Model for Radio
Interferometric Image Reconstruction [4.715025376297672]
We present VIC-DDPM, a Visibility and Image Conditioned Denoising Diffusion Probabilistic Model.
Our main idea is to use both the original visibility data in the spectral domain and dirty images in the spatial domain to guide the image generation process with DDPM.
Our results show that our method significantly improves the resulting images by reducing artifacts, preserving fine details, and recovering dim sources.
arXiv Detail & Related papers (2023-05-16T03:00:04Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
We propose a novel representation called DIffusion Reconstruction Error (DIRE)
DIRE measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model.
It provides a hint that DIRE can serve as a bridge to distinguish generated and real images.
arXiv Detail & Related papers (2023-03-16T13:15:03Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - AT-DDPM: Restoring Faces degraded by Atmospheric Turbulence using
Denoising Diffusion Probabilistic Models [64.24948495708337]
Atmospheric turbulence causes significant degradation to image quality by introducing blur and geometric distortion.
Various deep learning-based single image atmospheric turbulence mitigation methods, including CNN-based and GAN inversion-based, have been proposed.
Denoising Diffusion Probabilistic Models (DDPMs) have recently gained some traction because of their stable training process and their ability to generate high quality images.
arXiv Detail & Related papers (2022-08-24T03:13:04Z) - Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model [0.2578242050187029]
We present a diffusion probabilistic model that is fully unsupervised to learn from noise instead of signal.
Our method can significantly improve the image quality with a simple working pipeline and a small amount of training data.
arXiv Detail & Related papers (2022-01-27T19:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.