Panda or not Panda? Understanding Adversarial Attacks with Interactive Visualization
- URL: http://arxiv.org/abs/2311.13656v2
- Date: Sat, 05 Oct 2024 05:48:53 GMT
- Title: Panda or not Panda? Understanding Adversarial Attacks with Interactive Visualization
- Authors: Yuzhe You, Jarvis Tse, Jian Zhao,
- Abstract summary: Adversarial machine learning (AML) studies attacks that fool machine learning algorithms into generating incorrect outcomes.
We introduce AdvEx, a multi-level interactive visualization system that presents the properties and impacts of evasion attacks on different image classifiers.
Our results show that AdvEx is not only highly effective as a visualization tool for understanding AML mechanisms, but also provides an engaging and enjoyable learning experience.
- Score: 3.9985478938340107
- License:
- Abstract: Adversarial machine learning (AML) studies attacks that can fool machine learning algorithms into generating incorrect outcomes as well as the defenses against worst-case attacks to strengthen model robustness. Specifically for image classification, it is challenging to understand adversarial attacks due to their use of subtle perturbations that are not human-interpretable, as well as the variability of attack impacts influenced by diverse methodologies, instance differences, and model architectures. Through a design study with AML learners and teachers, we introduce AdvEx, a multi-level interactive visualization system that comprehensively presents the properties and impacts of evasion attacks on different image classifiers for novice AML learners. We quantitatively and qualitatively assessed AdvEx in a two-part evaluation including user studies and expert interviews. Our results show that AdvEx is not only highly effective as a visualization tool for understanding AML mechanisms, but also provides an engaging and enjoyable learning experience, thus demonstrating its overall benefits for AML learners.
Related papers
- Adversarial Attacks on Machine Learning-Aided Visualizations [12.37960099024803]
ML4VIS approaches are susceptible to a range of ML-specific adversarial attacks.
These attacks can manipulate visualization generations, causing analysts to be tricked and their judgments to be impaired.
We investigate the potential vulnerabilities of ML-aided visualizations from adversarial attacks using a holistic lens of both visualization and ML perspectives.
arXiv Detail & Related papers (2024-09-04T07:23:12Z) - A Systematic Evaluation of Adversarial Attacks against Speech Emotion Recognition Models [6.854732863866882]
Speech emotion recognition (SER) is constantly gaining attention in recent years due to its potential applications in diverse fields.
Recent studies have shown that deep learning models can be vulnerable to adversarial attacks.
arXiv Detail & Related papers (2024-04-29T09:00:32Z) - The Anatomy of Adversarial Attacks: Concept-based XAI Dissection [1.2916188356754918]
We study the influence of AAs on the concepts learned by convolutional neural networks (CNNs) using XAI techniques.
AAs induce substantial alterations in the concept composition within the feature space, introducing new concepts or modifying existing ones.
Our findings pave the way for the development of more robust and interpretable deep learning models.
arXiv Detail & Related papers (2024-03-25T13:57:45Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
We propose to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models.
By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner.
arXiv Detail & Related papers (2023-12-05T07:29:14Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - Attacks in Adversarial Machine Learning: A Systematic Survey from the
Life-cycle Perspective [69.25513235556635]
Adversarial machine learning (AML) studies the adversarial phenomenon of machine learning, which may make inconsistent or unexpected predictions with humans.
Some paradigms have been recently developed to explore this adversarial phenomenon occurring at different stages of a machine learning system.
We propose a unified mathematical framework to covering existing attack paradigms.
arXiv Detail & Related papers (2023-02-19T02:12:21Z) - Interpretations Cannot Be Trusted: Stealthy and Effective Adversarial
Perturbations against Interpretable Deep Learning [16.13790238416691]
This work introduces two attacks, AdvEdge and AdvEdge$+$, that deceive both the target deep learning model and the coupled interpretation model.
Our analysis shows the effectiveness of our attacks in terms of deceiving the deep learning models and their interpreters.
arXiv Detail & Related papers (2022-11-29T04:45:10Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
We make the first attempt to investigate the adversarial vulnerability of such paradigm under the attacks from both zero-knowledge adversaries and limited-knowledge adversaries.
The experimental results illustrate that the paradigm proposed by SUPERB is seriously vulnerable to limited-knowledge adversaries.
arXiv Detail & Related papers (2021-11-08T08:44:04Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.