Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning
- URL: http://arxiv.org/abs/2312.02546v2
- Date: Wed, 29 May 2024 06:40:44 GMT
- Title: Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning
- Authors: Zhuo Huang, Chang Liu, Yinpeng Dong, Hang Su, Shibao Zheng, Tongliang Liu,
- Abstract summary: We propose to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models.
By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner.
- Score: 67.0609518552321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although vision models such as Contrastive Language-Image Pre-Training (CLIP) show impressive generalization performance, their zero-shot robustness is still limited under Out-of-Distribution (OOD) scenarios without fine-tuning. Instead of undesirably providing human supervision as commonly done, it is possible to take advantage of Multi-modal Large Language Models (MLLMs) that hold powerful visual understanding abilities. However, MLLMs are shown to struggle with vision problems due to the incompatibility of tasks, thus hindering their utilization. In this paper, we propose to effectively leverage MLLMs to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models. By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner. To solve the incompatibility issue, we propose a novel Denoising In-Context Learning (DICL) strategy to align vision tasks with MLLMs. Concretely, by estimating a transition matrix that captures the probability of one class being confused with another, an instruction containing a correct exemplar and an erroneous one from the most probable noisy class can be constructed. Such an instruction can help any MLLMs with ICL ability to detect and rectify incorrect predictions of vision models. Through extensive experiments on ImageNet, WILDS, DomainBed, and other OOD datasets, we carefully validate the quantitative and qualitative effectiveness of our method. Our code is available at https://github.com/tmllab/Machine_Vision_Therapy.
Related papers
- SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs [40.74693126923826]
Multimodal Large Language Models (MLLMs) have recently demonstrated remarkable perceptual and reasoning abilities.
Training adapters with image-level supervision often results in significant misalignment.
We introduce Supervised Embedding Alignment (SEA), a token-level alignment method that leverages vision-language pre-trained models.
arXiv Detail & Related papers (2024-08-21T17:58:02Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.
This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)
SeTok groups visual features into semantic units via a dynamic clustering algorithm.
The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z) - Towards Multimodal In-Context Learning for Vision & Language Models [21.69457980865084]
State-of-the-art Vision-Language Models (VLMs) ground the vision and the language modality.
We propose a simple yet surprisingly effective multi-turn curriculum-based learning methodology with effective data mixes.
arXiv Detail & Related papers (2024-03-19T13:53:37Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
Our research reveals that the visual capabilities in recent multimodal LLMs still exhibit systematic shortcomings.
We identify ''CLIP-blind pairs'' - images that CLIP perceives as similar despite their clear visual differences.
We evaluate various CLIP-based vision-and-language models and found a notable correlation between visual patterns that challenge CLIP models and those problematic for multimodal LLMs.
arXiv Detail & Related papers (2024-01-11T18:58:36Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
Vision-language models (VLMs) have shown powerful capabilities in visual question answering and reasoning tasks.
In this paper, we demonstrate a method of aligning the embedding spaces of different modalities to the vision embedding space.
We show that using multiple modalities as input improves the VLM's scene understanding and enhances its overall performance in various tasks.
arXiv Detail & Related papers (2023-08-31T06:53:55Z) - What Makes for Good Visual Tokenizers for Large Language Models? [26.488269091290597]
We investigate proper pre-training methods to build good visual tokenizers, making Large Language Models (LLMs) powerful Multimodal Large Language Models (MLLMs)
We discuss different visual tokenizers pre-trained with dominant methods (i.e., DeiT, CLIP, MAE, DINO)
We obtain a new MLLM equipped with a tailored Good Visual Tokenizer (GVT), which exhibits strong visual comprehension capability at multiple scales.
arXiv Detail & Related papers (2023-05-20T16:11:26Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.