DiverseNet: Decision Diversified Semi-supervised Semantic Segmentation Networks for Remote Sensing Imagery
- URL: http://arxiv.org/abs/2311.13716v2
- Date: Sun, 31 Mar 2024 19:23:55 GMT
- Title: DiverseNet: Decision Diversified Semi-supervised Semantic Segmentation Networks for Remote Sensing Imagery
- Authors: Wanli Ma, Oktay Karakus, Paul L. Rosin,
- Abstract summary: We propose DiverseNet which explores multi-head and multi-model semi-supervised learning algorithms by simultaneously enhancing precision and diversity during training.
The two proposed methods in the DiverseNet family, namely DiverseHead and DiverseModel, both achieve the better semantic segmentation performance in four widely utilised remote sensing imagery data sets.
- Score: 17.690698736544626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning aims to help reduce the cost of the manual labelling process by leveraging valuable features extracted from a substantial pool of unlabeled data alongside a limited set of labelled data during the training phase. Since pixel-level manual labelling in large-scale remote sensing imagery is expensive, semi-supervised learning becomes an appropriate solution to this. However, most of the existing consistency learning frameworks based on network perturbation are very bulky. There is still a lack of lightweight and efficient perturbation methods to promote the diversity of features and the precision of pseudo labels during training. In order to fill this gap, we propose DiverseNet which explores multi-head and multi-model semi-supervised learning algorithms by simultaneously enhancing precision and diversity during training. The two proposed methods in the DiverseNet family, namely DiverseHead and DiverseModel, both achieve the better semantic segmentation performance in four widely utilised remote sensing imagery data sets compared to state-of-the-art semi-supervised learning methods. Meanwhile, the proposed DiverseHead architecture is simple and relatively lightweight in terms of parameter space compared to the state-of-the-art methods whilst reaching high-performance results for all the tested data sets.
Related papers
- Exploiting Minority Pseudo-Labels for Semi-Supervised Semantic Segmentation in Autonomous Driving [2.638145329894673]
We propose a professional training module to enhance minority class learning and a general training module to learn more comprehensive semantic information.
In experiments, our framework demonstrates superior performance compared to state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2024-09-19T11:47:25Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - GenCo: An Auxiliary Generator from Contrastive Learning for Enhanced
Few-Shot Learning in Remote Sensing [9.504503675097137]
We introduce a generator-based contrastive learning framework (GenCo) that pre-trains backbones and simultaneously explores variants of feature samples.
In fine-tuning, the auxiliary generator can be used to enrich limited labeled data samples in feature space.
We demonstrate the effectiveness of our method in improving few-shot learning performance on two key remote sensing datasets.
arXiv Detail & Related papers (2023-07-27T03:59:19Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Training Methods of Multi-label Prediction Classifiers for Hyperspectral
Remote Sensing Images [0.0]
We propose a multi-label, patch-level classification method for hyperspectral remote sensing images.
We use patches of reduced spatial dimension and a complete spectral depth extracted from the remote sensing images.
arXiv Detail & Related papers (2023-01-17T13:30:03Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Learning Discriminative Representations for Multi-Label Image
Recognition [13.13795708478267]
We propose a unified deep network to learn discriminative features for the multi-label task.
By regularizing the whole network with the proposed loss, the performance of applying the wellknown ResNet-101 is improved significantly.
arXiv Detail & Related papers (2021-07-23T12:10:46Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.