論文の概要: Knowledge Distillation Based Semantic Communications For Multiple Users
- arxiv url: http://arxiv.org/abs/2311.13789v1
- Date: Thu, 23 Nov 2023 03:28:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 00:46:45.286462
- Title: Knowledge Distillation Based Semantic Communications For Multiple Users
- Title(参考訳): 知識蒸留に基づく複数ユーザのための意味コミュニケーション
- Authors: Chenguang Liu, Yuxin Zhou, Yunfei Chen and Shuang-Hua Yang
- Abstract要約: 本稿では,複数のユーザを対象としたセマンティックコミュニケーション(SemCom)システムについて考察する。
本稿では,トランスフォーマーベースのエンコーダデコーダをセマンティックエンコーダデコーダとして実装し,チャネルエンコーダデコーダとして完全に接続されたニューラルネットワークを実装した知識蒸留(KD)システムを提案する。
数値計算の結果,KDは予期せぬ干渉に適用した場合のロバスト性や一般化能力を大幅に向上し,モデルサイズを圧縮した場合の性能損失を低減できることがわかった。
- 参考スコア(独自算出の注目度): 10.770552656390038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL) has shown great potential in revolutionizing the
traditional communications system. Many applications in communications have
adopted DL techniques due to their powerful representation ability. However,
the learning-based methods can be dependent on the training dataset and perform
worse on unseen interference due to limited model generalizability and
complexity. In this paper, we consider the semantic communication (SemCom)
system with multiple users, where there is a limited number of training samples
and unexpected interference. To improve the model generalization ability and
reduce the model size, we propose a knowledge distillation (KD) based system
where Transformer based encoder-decoder is implemented as the semantic
encoder-decoder and fully connected neural networks are implemented as the
channel encoder-decoder. Specifically, four types of knowledge transfer and
model compression are analyzed. Important system and model parameters are
considered, including the level of noise and interference, the number of
interfering users and the size of the encoder and decoder. Numerical results
demonstrate that KD significantly improves the robustness and the
generalization ability when applied to unexpected interference, and it reduces
the performance loss when compressing the model size.
- Abstract(参考訳): ディープラーニング(DL)は,従来のコミュニケーションシステムに革命をもたらす大きな可能性を示している。
コミュニケーションにおける多くのアプリケーションは、強力な表現能力のためにDL技術を採用している。
しかしながら、学習に基づく手法は、トレーニングデータセットに依存し、モデルの一般化性や複雑さが限られているため、見過ごされない干渉によりさらに悪化する可能性がある。
本稿では,複数のユーザを対象としたセマンティックコミュニケーション(SemCom)システムについて考察する。
そこで本研究では,トランスフォーマーをベースとしたエンコーダデコーダをセマンティックエンコーダデコーダとして実装し,チャネルエンコーダデコーダとして完全に接続されたニューラルネットワークを実装した知識蒸留(KD)システムを提案する。
具体的には,4種類の知識伝達とモデル圧縮を解析する。
ノイズと干渉のレベル、干渉ユーザ数、エンコーダとデコーダのサイズなど、重要なシステムとモデルパラメータが考慮されている。
数値計算の結果,kdは不意な干渉に適用した場合のロバスト性と一般化能力を大幅に改善し,モデルサイズ圧縮時の性能損失を低減できることがわかった。
関連論文リスト
- Dynamic Encoding and Decoding of Information for Split Learning in
Mobile-Edge Computing: Leveraging Information Bottleneck Theory [1.1151919978983582]
Split Learning(スプリットラーニング)は、MLモデルを2つの部分(エンコーダとデコーダ)に分割する、プライバシ保護の分散学習パラダイムである。
モバイルエッジコンピューティングでは、エンコーダがユーザ機器(UE)に、デコーダがエッジネットワークに、分割学習によってネットワーク機能を訓練することができる。
本稿では,送信リソース消費の動的バランスと,共有潜在表現の情報化を両立させるためのフレームワークとトレーニング機構を提案する。
論文 参考訳(メタデータ) (2023-09-06T07:04:37Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - Discrete-Valued Neural Communication [85.3675647398994]
コンポーネント間で伝達される情報を離散表現に制限することは、有益なボトルネックであることを示す。
個人は「猫」が特定の経験に基づいて何であるかについて異なる理解を持っているが、共有された離散トークンは、個人間のコミュニケーションが内部表現の個人差によって切り離されることを可能にする。
我々は、量子化機構をベクトル量子化変分オートコーダから共有符号ブックによる多頭部離散化に拡張し、離散値ニューラル通信に利用する。
論文 参考訳(メタデータ) (2021-07-06T03:09:25Z) - Capacity-Approaching Autoencoders for Communications [4.86067125387358]
オートエンコーダを訓練する現在のアプローチは、クロスエントロピー損失関数の使用に依存している。
本稿では,チャネル容量の推定値を計算し,それに近づく最適な符号化信号を構築する手法を提案する。
論文 参考訳(メタデータ) (2020-09-11T08:19:06Z) - Neural Communication Systems with Bandwidth-limited Channel [9.332315420944836]
情報損失にもかかわらずメッセージを確実に送信することは情報理論の中核的な問題である。
本研究では,帯域幅制限チャネル(BWLC)を用いた符号化学習について検討する。
論文 参考訳(メタデータ) (2020-03-30T11:58:30Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。