RSB-Pose: Robust Short-Baseline Binocular 3D Human Pose Estimation with Occlusion Handling
- URL: http://arxiv.org/abs/2311.14242v2
- Date: Tue, 6 Aug 2024 16:36:11 GMT
- Title: RSB-Pose: Robust Short-Baseline Binocular 3D Human Pose Estimation with Occlusion Handling
- Authors: Xiaoyue Wan, Zhuo Chen, Yiming Bao, Xu Zhao,
- Abstract summary: We set our sights on a short-baseline binocular setting that offers both portability and a geometric measurement property.
As the binocular baseline shortens, two serious challenges emerge: first, the robustness of 3D reconstruction against 2D errors deteriorates.
We propose the Stereo Co-Keypoints Estimation module to improve the view consistency of 2D keypoints and enhance the 3D robustness.
- Score: 19.747618899243555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the domain of 3D Human Pose Estimation, which finds widespread daily applications, the requirement for convenient acquisition equipment continues to grow. To satisfy this demand, we set our sights on a short-baseline binocular setting that offers both portability and a geometric measurement property that radically mitigates depth ambiguity. However, as the binocular baseline shortens, two serious challenges emerge: first, the robustness of 3D reconstruction against 2D errors deteriorates; and second, occlusion reoccurs due to the limited visual differences between two views. To address the first challenge, we propose the Stereo Co-Keypoints Estimation module to improve the view consistency of 2D keypoints and enhance the 3D robustness. In this module, the disparity is utilized to represent the correspondence of binocular 2D points and the Stereo Volume Feature is introduced to contain binocular features across different disparities. Through the regression of SVF, two-view 2D keypoints are simultaneously estimated in a collaborative way which restricts their view consistency. Furthermore, to deal with occlusions, a Pre-trained Pose Transformer module is introduced. Through this module, 3D poses are refined by perceiving pose coherence, a representation of joint correlations. This perception is injected by the Pose Transformer network and learned through a pre-training task that recovers iterative masked joints. Comprehensive experiments carried out on H36M and MHAD datasets, complemented by visualizations, validate the effectiveness of our approach in the short-baseline binocular 3D Human Pose Estimation and occlusion handling.
Related papers
- GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - Geometry-Biased Transformer for Robust Multi-View 3D Human Pose
Reconstruction [3.069335774032178]
We propose a novel encoder-decoder Transformer architecture to estimate 3D poses from multi-view 2D pose sequences.
We conduct experiments on three benchmark public datasets, Human3.6M, CMU Panoptic and Occlusion-Persons.
arXiv Detail & Related papers (2023-12-28T16:30:05Z) - JOTR: 3D Joint Contrastive Learning with Transformers for Occluded Human
Mesh Recovery [84.67823511418334]
This paper presents 3D JOint contrastive learning with TRansformers framework for handling occluded 3D human mesh recovery.
Our method includes an encoder-decoder transformer architecture to fuse 2D and 3D representations for achieving 2D$&$3D aligned results.
arXiv Detail & Related papers (2023-07-31T02:58:58Z) - View Consistency Aware Holistic Triangulation for 3D Human Pose
Estimation [19.17724401988387]
We introduce a Multi-View Fusion module to refine 2D results by establishing view correlations.
Holistic Triangulation is proposed to infer the whole pose as an entirety, and anatomy prior is injected to maintain the pose coherence.
Our method outperforms the state of the art in both precision and plausibility which is assessed by a new metric.
arXiv Detail & Related papers (2023-02-22T11:36:40Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - A Dual-Masked Auto-Encoder for Robust Motion Capture with
Spatial-Temporal Skeletal Token Completion [13.88656793940129]
We propose an adaptive, identity-aware triangulation module to reconstruct 3D joints and identify the missing joints for each identity.
We then propose a Dual-Masked Auto-Encoder (D-MAE) which encodes the joint status with both skeletal-structural and temporal position encoding for trajectory completion.
In order to demonstrate the proposed model's capability in dealing with severe data loss scenarios, we contribute a high-accuracy and challenging motion capture dataset.
arXiv Detail & Related papers (2022-07-15T10:00:43Z) - Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose
Estimation [63.199549837604444]
3D human pose estimation approaches leverage different forms of strong (2D/3D pose) or weak (multi-view or depth) paired supervision.
We cast 3D pose learning as a self-supervised adaptation problem that aims to transfer the task knowledge from a labeled source domain to a completely unpaired target.
We evaluate different self-adaptation settings and demonstrate state-of-the-art 3D human pose estimation performance on standard benchmarks.
arXiv Detail & Related papers (2022-04-05T03:52:57Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.