Learning to Align and Refine: A Foundation-to-Diffusion Framework for Occlusion-Robust Two-Hand Reconstruction
- URL: http://arxiv.org/abs/2503.17788v2
- Date: Thu, 31 Jul 2025 17:55:56 GMT
- Title: Learning to Align and Refine: A Foundation-to-Diffusion Framework for Occlusion-Robust Two-Hand Reconstruction
- Authors: Gaoge Han, Yongkang Cheng, Zhe Chen, Shaoli Huang, Tongliang Liu,
- Abstract summary: Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures.<n>Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts.<n>We propose a dual-stage Foundation-to-Diffusion framework that precisely align 2D prior guidance from vision foundation models.
- Score: 50.952228546326516
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures and occlusions, causing significant difficulty in achieving plausible interaction alignment. Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts. To tackle this, we propose a dual-stage Foundation-to-Diffusion framework that precisely align 2D prior guidance from vision foundation models and diffusion-based generative 3D interaction refinement to achieve occlusion-robust two-hand reconstruction. First, we introduce a lightweight fusion alignment encoder that aligns fused multimodal 2D priors like key points, segmentation maps, and depth cues from vision foundation models during training. This provides robust structured guidance, further enabling efficient inference without heavy foundation model encoders at test time while maintaining high reconstruction accuracy. Second, we implement a two-hand diffusion model explicitly trained to convert interpenetrated 3D poses into plausible, penetration-free counterparts. Through collision gradient-guided denoising, the model rectifies artifacts while preserving natural spatial relationships between hands. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on InterHand2.6M, HIC, and FreiHAND datasets, significantly advancing occlusion handling and interaction robustness. Our code will be publicly released.
Related papers
- Look Before You Fuse: 2D-Guided Cross-Modal Alignment for Robust 3D Detection [7.448164560761331]
Existing methods suffer from spatial misalignment between LiDAR and camera features.<n>The root cause of this misalignment lies in projection errors, stemming from calibration inaccuracies and rolling shutter effect.<n>We introduce Discontinuity Aware Geometric Fusion to suppress residual noise from PGDC and explicitly enhance sharp depth transitions at object-background boundaries.<n>Our method achieves SOTA performance on nuScenes validation dataset, with its mAP and NDS reaching 71.5% and 73.6% respectively.
arXiv Detail & Related papers (2025-07-21T18:12:22Z) - Consistency Diffusion Models for Single-Image 3D Reconstruction with Priors [24.086775858948755]
We introduce a pioneering training framework under diffusion models.<n>We convert 3D structural priors derived from the initial 3D point cloud as a bound term.<n>We extract and incorporate 2D priors from the single input image, projecting them onto the 3D point cloud to enrich the guidance for diffusion training.
arXiv Detail & Related papers (2025-01-28T06:21:57Z) - GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency [50.11520458252128]
Existing 3D affordance learning methods struggle with generalization and robustness due to limited annotated data.<n>We propose GEAL, a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging large-scale pre-trained 2D models.<n>GEAL consistently outperforms existing methods across seen and novel object categories, as well as corrupted data.
arXiv Detail & Related papers (2024-12-12T17:59:03Z) - Dynamic Reconstruction of Hand-Object Interaction with Distributed Force-aware Contact Representation [52.36691633451968]
ViTaM-D is a visual-tactile framework for dynamic hand-object interaction reconstruction.
DF-Field is a distributed force-aware contact representation model.
Our results highlight the superior performance of ViTaM-D in both rigid and deformable object reconstruction.
arXiv Detail & Related papers (2024-11-14T16:29:45Z) - BIFRÖST: 3D-Aware Image compositing with Language Instructions [27.484947109237964]
Bifr"ost is a novel 3D-aware framework that is built upon diffusion models to perform instruction-based image composition.
Bifr"ost addresses issues by training MLLM as a 2.5D location predictor and integrating depth maps as an extra condition during the generation process.
arXiv Detail & Related papers (2024-10-24T18:35:12Z) - ManiDext: Hand-Object Manipulation Synthesis via Continuous Correspondence Embeddings and Residual-Guided Diffusion [36.9457697304841]
ManiDext is a unified hierarchical diffusion-based framework for generating hand manipulation and grasp poses.
Our key insight is that accurately modeling the contact correspondences between objects and hands during interactions is crucial.
Our framework first generates contact maps and correspondence embeddings on the object's surface.
Based on these fine-grained correspondences, we introduce a novel approach that integrates the iterative refinement process into the diffusion process.
arXiv Detail & Related papers (2024-09-14T04:28:44Z) - DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image [98.29284902879652]
We present DICE, the first end-to-end method for Deformation-aware hand-face Interaction reCovEry from a single image.<n>It features disentangling the regression of local deformation fields and global mesh locations into two network branches.<n>It achieves state-of-the-art performance on a standard benchmark and in-the-wild data in terms of accuracy and physical plausibility.
arXiv Detail & Related papers (2024-06-26T00:08:29Z) - InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion [53.90516061351706]
We present InterHandGen, a novel framework that learns the generative prior of two-hand interaction.
For sampling, we combine anti-penetration and synthesis-free guidance to enable plausible generation.
Our method significantly outperforms baseline generative models in terms of plausibility and diversity.
arXiv Detail & Related papers (2024-03-26T06:35:55Z) - 3D Hand Reconstruction via Aggregating Intra and Inter Graphs Guided by
Prior Knowledge for Hand-Object Interaction Scenario [8.364378460776832]
We propose a 3D hand reconstruction network combining the benefits of model-based and model-free approaches to balance accuracy and physical plausibility for hand-object interaction scenario.
Firstly, we present a novel MANO pose parameters regression module from 2D joints directly, which avoids the process of highly nonlinear mapping from abstract image feature.
arXiv Detail & Related papers (2024-03-04T05:11:26Z) - Exploring Latent Cross-Channel Embedding for Accurate 3D Human Pose
Reconstruction in a Diffusion Framework [6.669850111205944]
Monocular 3D human pose estimation poses significant challenges due to inherent depth ambiguities that arise during the reprojection process from 2D to 3D.
Recent advancements in diffusion models have shown promise in incorporating structural priors to address reprojection ambiguities.
We propose a novel cross-channel embedding framework that aims to fully explore the correlation between joint-level features of 3D coordinates and their 2D projections.
arXiv Detail & Related papers (2024-01-18T09:53:03Z) - D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction [74.49121940466675]
We introduce centroid-fixed dual-stream conditional diffusion for monocular hand-held object reconstruction.
First, to avoid the object centroid from deviating, we utilize a novel hand-constrained centroid fixing paradigm.
Second, we introduce a dual-stream denoiser to semantically and geometrically model hand-object interactions.
arXiv Detail & Related papers (2023-11-23T20:14:50Z) - Monocular 3D Reconstruction of Interacting Hands via Collision-Aware
Factorized Refinements [96.40125818594952]
We make the first attempt to reconstruct 3D interacting hands from monocular single RGB images.
Our method can generate 3D hand meshes with both precise 3D poses and minimal collisions.
arXiv Detail & Related papers (2021-11-01T08:24:10Z) - Real-time Pose and Shape Reconstruction of Two Interacting Hands With a
Single Depth Camera [79.41374930171469]
We present a novel method for real-time pose and shape reconstruction of two strongly interacting hands.
Our approach combines an extensive list of favorable properties, namely it is marker-less.
We show state-of-the-art results in scenes that exceed the complexity level demonstrated by previous work.
arXiv Detail & Related papers (2021-06-15T11:39:49Z) - Adversarial Motion Modelling helps Semi-supervised Hand Pose Estimation [116.07661813869196]
We propose to combine ideas from adversarial training and motion modelling to tap into unlabeled videos.
We show that an adversarial leads to better properties of the hand pose estimator via semi-supervised training on unlabeled video sequences.
The main advantage of our approach is that we can make use of unpaired videos and joint sequence data both of which are much easier to attain than paired training data.
arXiv Detail & Related papers (2021-06-10T17:50:19Z) - RobustFusion: Robust Volumetric Performance Reconstruction under
Human-object Interactions from Monocular RGBD Stream [27.600873320989276]
High-quality 4D reconstruction of human performance with complex interactions to various objects is essential in real-world scenarios.
Recent advances still fail to provide reliable performance reconstruction.
We propose RobustFusion, a robust volumetric performance reconstruction system for human-object interaction scenarios.
arXiv Detail & Related papers (2021-04-30T08:41:45Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
We present a method to leverage photometric consistency across time when annotations are only available for a sparse subset of frames in a video.
Our model is trained end-to-end on color images to jointly reconstruct hands and objects in 3D by inferring their poses.
We achieve state-of-the-art results on 3D hand-object reconstruction benchmarks and demonstrate that our approach allows us to improve the pose estimation accuracy.
arXiv Detail & Related papers (2020-04-28T12:03:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.