BHGNN-RT: Network embedding for directed heterogeneous graphs
- URL: http://arxiv.org/abs/2311.14404v1
- Date: Fri, 24 Nov 2023 10:56:09 GMT
- Title: BHGNN-RT: Network embedding for directed heterogeneous graphs
- Authors: Xiyang Sun, Fumiyasu Komaki
- Abstract summary: We propose an embedding method, a bidirectional heterogeneous graph neural network with random teleport (BHGNN-RT), for directed heterogeneous graphs.
Extensive experiments on various datasets were conducted to verify the efficacy and efficiency of BHGNN-RT.
BHGNN-RT achieves state-of-the-art performance, outperforming the benchmark methods in both node classification and unsupervised clustering tasks.
- Score: 8.7024326813104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Networks are one of the most valuable data structures for modeling problems
in the real world. However, the most recent node embedding strategies have
focused on undirected graphs, with limited attention to directed graphs,
especially directed heterogeneous graphs. In this study, we first investigated
the network properties of directed heterogeneous graphs. Based on network
analysis, we proposed an embedding method, a bidirectional heterogeneous graph
neural network with random teleport (BHGNN-RT), for directed heterogeneous
graphs, that leverages bidirectional message-passing process and network
heterogeneity. With the optimization of teleport proportion, BHGNN-RT is
beneficial to overcome the over-smoothing problem. Extensive experiments on
various datasets were conducted to verify the efficacy and efficiency of
BHGNN-RT. Furthermore, we investigated the effects of message components, model
layer, and teleport proportion on model performance. The performance comparison
with all other baselines illustrates that BHGNN-RT achieves state-of-the-art
performance, outperforming the benchmark methods in both node classification
and unsupervised clustering tasks.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - 2-hop Neighbor Class Similarity (2NCS): A graph structural metric
indicative of graph neural network performance [4.051099980410583]
Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains.
On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently.
We introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics.
arXiv Detail & Related papers (2022-12-26T16:16:51Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z) - Beyond Homophily in Graph Neural Networks: Current Limitations and
Effective Designs [28.77753005139331]
We investigate the representation power of graph neural networks in a semi-supervised node classification task under heterophily or low homophily.
Many popular GNNs fail to generalize to this setting, and are even outperformed by models that ignore the graph structure.
We identify a set of key designs that boost learning from the graph structure under heterophily.
arXiv Detail & Related papers (2020-06-20T02:05:01Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.