2-hop Neighbor Class Similarity (2NCS): A graph structural metric
indicative of graph neural network performance
- URL: http://arxiv.org/abs/2212.13202v1
- Date: Mon, 26 Dec 2022 16:16:51 GMT
- Title: 2-hop Neighbor Class Similarity (2NCS): A graph structural metric
indicative of graph neural network performance
- Authors: Andrea Cavallo, Claas Grohnfeldt, Michele Russo, Giulio Lovisotto,
Luca Vassio
- Abstract summary: Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains.
On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently.
We introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics.
- Score: 4.051099980410583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) achieve state-of-the-art performance on
graph-structured data across numerous domains. Their underlying ability to
represent nodes as summaries of their vicinities has proven effective for
homophilous graphs in particular, in which same-type nodes tend to connect. On
heterophilous graphs, in which different-type nodes are likely connected, GNNs
perform less consistently, as neighborhood information might be less
representative or even misleading. On the other hand, GNN performance is not
inferior on all heterophilous graphs, and there is a lack of understanding of
what other graph properties affect GNN performance.
In this work, we highlight the limitations of the widely used homophily ratio
and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating
GNN performance. To overcome these limitations, we introduce 2-hop Neighbor
Class Similarity (2NCS), a new quantitative graph structural property that
correlates with GNN performance more strongly and consistently than alternative
metrics. 2NCS considers two-hop neighborhoods as a theoretically derived
consequence of the two-step label propagation process governing GCN's
training-inference process. Experiments on one synthetic and eight real-world
graph datasets confirm consistent improvements over existing metrics in
estimating the accuracy of GCN- and GAT-based architectures on the node
classification task.
Related papers
- PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
We introduce PROXI, which leverages proximity information of node pairs in both graph and attribute spaces.
Standard machine learning (ML) models perform competitively, even outperforming cutting-edge GNN models.
We show that augmenting traditional GNNs with PROXI significantly boosts their link prediction performance.
arXiv Detail & Related papers (2024-10-02T17:57:38Z) - Global Minima, Recoverability Thresholds, and Higher-Order Structure in
GNNS [0.0]
We analyze the performance of graph neural network (GNN) architectures from the perspective of random graph theory.
We show how both specific higher-order structures in synthetic data and the mix of empirical structures in real data have dramatic effects on GNN performance.
arXiv Detail & Related papers (2023-10-11T17:16:33Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
Most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns.
We provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes.
We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity.
arXiv Detail & Related papers (2023-06-02T07:46:20Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
arXiv Detail & Related papers (2022-03-15T06:48:35Z) - On Local Aggregation in Heterophilic Graphs [11.100606980915144]
We show that properly tuned classical GNNs and multi-layer perceptrons match or exceed the accuracy of recent long-range aggregation methods on heterophilic graphs.
We propose the Neighborhood Information Content(NIC) metric, which is a novel information-theoretic graph metric.
arXiv Detail & Related papers (2021-06-06T19:12:31Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.