論文の概要: Online Importance Sampling for Stochastic Gradient Optimization
- arxiv url: http://arxiv.org/abs/2311.14468v3
- Date: Tue, 28 Jan 2025 09:29:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:38:51.492426
- Title: Online Importance Sampling for Stochastic Gradient Optimization
- Title(参考訳): 確率的勾配最適化のためのオンライン重要度サンプリング
- Authors: Corentin Salaün, Xingchang Huang, Iliyan Georgiev, Niloy J. Mitra, Gurprit Singh,
- Abstract要約: 本稿では,トレーニング中のデータの重要度を効率的に計算する実用的なアルゴリズムを提案する。
また、ネットワーク出力の損失w.r.t.の導出に基づく新しいメトリクスを導入し、ミニバッチの重要度サンプリング用に設計した。
- 参考スコア(独自算出の注目度): 33.42221341526944
- License:
- Abstract: Machine learning optimization often depends on stochastic gradient descent, where the precision of gradient estimation is vital for model performance. Gradients are calculated from mini-batches formed by uniformly selecting data samples from the training dataset. However, not all data samples contribute equally to gradient estimation. To address this, various importance sampling strategies have been developed to prioritize more significant samples. Despite these advancements, all current importance sampling methods encounter challenges related to computational efficiency and seamless integration into practical machine learning pipelines. In this work, we propose a practical algorithm that efficiently computes data importance on-the-fly during training, eliminating the need for dataset preprocessing. We also introduce a novel metric based on the derivative of the loss w.r.t. the network output, designed for mini-batch importance sampling. Our metric prioritizes influential data points, thereby enhancing gradient estimation accuracy. We demonstrate the effectiveness of our approach across various applications. We first perform classification and regression tasks to demonstrate improvements in accuracy. Then, we show how our approach can also be used for online data pruning by identifying and discarding data samples that contribute minimally towards the training loss. This significantly reduce training time with negligible loss in the accuracy of the model.
- Abstract(参考訳): 機械学習の最適化はしばしば確率的勾配勾配に依存し、モデルの性能には勾配推定の精度が不可欠である。
トレーニングデータセットからデータサンプルを均一に選択したミニバッチからグラディエントを算出する。
しかし、すべてのデータサンプルが等しく勾配推定に寄与するわけではない。
これを解決するために、より重要なサンプルを優先するために、様々な重要なサンプリング戦略が開発されている。
これらの進歩にもかかわらず、現在の重要なサンプリング手法はすべて、計算効率と実用的な機械学習パイプラインへのシームレスな統合に関連する課題に直面している。
本研究では,トレーニング中のデータの重要度を効率的に計算し,データセット前処理の必要性を解消する実用的なアルゴリズムを提案する。
また、ネットワーク出力の損失w.r.t.の導出に基づく新しいメトリクスを導入し、ミニバッチの重要度サンプリング用に設計した。
我々の測定基準は、影響力のあるデータポイントを優先し、勾配推定精度を向上する。
様々なアプリケーションにまたがるアプローチの有効性を実証する。
まず分類タスクと回帰タスクを行い、精度の向上を実証する。
そして、トレーニング損失に対して最小限に寄与するデータサンプルを特定し、破棄することで、オンラインデータプルーニングに我々のアプローチをどのように利用できるかを示す。
これにより、モデルの精度を損なうことなく、トレーニング時間を著しく短縮する。
関連論文リスト
- FLOPS: Forward Learning with OPtimal Sampling [1.694989793927645]
勾配に基づく計算手法は、最近、クエリとも呼ばれる前方通過のみによる学習に焦点が当てられている。
従来の前方学習はモンテカルロサンプリングによる正確な勾配推定のために各データポイントで膨大なクエリを消費する。
本稿では,評価精度と計算効率のバランスを良くするために,訓練中の各データに対して最適なクエリ数を割り当てることを提案する。
論文 参考訳(メタデータ) (2024-10-08T12:16:12Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Delving into Effective Gradient Matching for Dataset Condensation [13.75957901381024]
勾配マッチング法は、元のデータセットと合成データセットのトレーニング時に勾配をマッチングすることで、トレーニングダイナミクスを直接ターゲットとする。
クラス内勾配情報とクラス間勾配情報の両方を含む多段階勾配情報とを一致させることを提案する。
アルゴリズムの効率向上のための不要な最適化ステップをトリムするために、過適合適応学習ステップ戦略も提案されている。
論文 参考訳(メタデータ) (2022-07-30T21:31:10Z) - Adaptive Sketches for Robust Regression with Importance Sampling [64.75899469557272]
我々は、勾配降下(SGD)による頑健な回帰を解くためのデータ構造を導入する。
我々のアルゴリズムは、サブ線形空間を使用し、データに1回パスするだけで、SGDの$T$ステップを重要サンプリングで効果的に実行します。
論文 参考訳(メタデータ) (2022-07-16T03:09:30Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
深層学習におけるデータ不均衡やラベルノイズ問題に対処するための証明可能な手法(ABSGD)を提案する。
本手法は運動量SGDの簡易な修正であり,各試料に個別の重み付けを行う。
ABSGDは追加コストなしで他の堅牢な損失と組み合わせられるほど柔軟である。
論文 参考訳(メタデータ) (2020-12-13T03:41:52Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。