論文の概要: RTPS Attack Dataset Description
- arxiv url: http://arxiv.org/abs/2311.14496v3
- Date: Sun, 31 Mar 2024 08:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 15:05:24.184792
- Title: RTPS Attack Dataset Description
- Title(参考訳): RTPS攻撃データセットの説明
- Authors: Dong Young Kim, Dongsung Kim, Yuchan Song, Gang Min Kim, Min Geun Song, Jeong Do Yoo, Huy Kang Kim,
- Abstract要約: 我々は、通常状態の無人地上車両(UGV)に攻撃データを注入することで、攻撃データと通常のパケットデータを収集する。
このデータセットを収集するために、UGV、コントローラ、PC、ルータからなるテストベッドを組み立てました。
- 参考スコア(独自算出の注目度): 3.4193224029314937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper explains all about our RTPS datasets. We collect attack and normal packet data by injecting attack data in an Unmanned Ground Vehicle (UGV) which is normal state. To collect this dataset, We assembled a test bed consisting of UGV, controller, PC, and router. We conducted two types of Attacks "Command Injection" and "ARP Spoofing" on the testbed. The data collection time is 180, 300, 600, and 1200, the scenario has 30 each on collection time. 240 total. We expect this dataset will contribute to the development of technologies such as anomaly detection to address security threat issues in ROS2 networks and UGVs.
- Abstract(参考訳): 本稿ではRTPSデータセットについて概説する。
我々は、通常状態の無人地上車両(UGV)に攻撃データを注入することで、攻撃データと通常のパケットデータを収集する。
このデータセットを収集するために、UGV、コントローラ、PC、ルータからなるテストベッドを組み立てました。
テストベッド上で「コマンドインジェクション」と「ARPスポーフィング」の2種類の攻撃を行った。
データ収集時間は180、300、600、1200で、シナリオはコレクション時間毎に30である。
全240機。
このデータセットは、ROS2ネットワークやUGVのセキュリティ脅威問題に対処するために、異常検出などの技術の開発に寄与することを期待しています。
関連論文リスト
- ROSpace: Intrusion Detection Dataset for a ROS2-Based Cyber-Physical
System [2.1749194587826026]
ロボット・オペレーティング・システム2(ROS2)上に構築された組み込みサイバー物理システムにおける侵入検知のためのデータセットについて述べる。
データセットは時系列として構造化され、システムの期待される振る舞いとROS2固有の攻撃に対する応答を記述する。
論文 参考訳(メタデータ) (2024-02-13T13:54:47Z) - Real-Time Zero-Day Intrusion Detection System for Automotive Controller
Area Network on FPGAs [13.581341206178525]
本稿では,ゼロデイアタックを検出するための教師なし学習に基づく畳み込みオートエンコーダアーキテクチャを提案する。
資源制約のZynq Ultrascaleプラットフォームを対象としたAMD/XilinxのVitis-AIツールを用いてモデルを定量化する。
提案モデルでは, 未知のDoS, ファジング, スプーフィング攻撃に対して, 同一以上の分類精度 (>99.5%) を達成することができた。
論文 参考訳(メタデータ) (2024-01-19T14:36:01Z) - Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game [86.66627242073724]
本稿では,126,000以上のプロンプトインジェクションと46,000以上のプロンプトベースのプロンプトインジェクションに対する「防御」のデータセットを提案する。
我々の知る限り、これは現在、命令追従 LLM に対する人間生成の敵例の最大のデータセットである。
また、データセットを使用して、2種類のプロンプトインジェクションに対する耐性のベンチマークを作成し、これをプロンプト抽出とプロンプトハイジャックと呼ぶ。
論文 参考訳(メタデータ) (2023-11-02T06:13:36Z) - Stop Uploading Test Data in Plain Text: Practical Strategies for
Mitigating Data Contamination by Evaluation Benchmarks [70.39633252935445]
データ汚染は、大規模な自動クロールコーパスで事前訓練されたモデルの台頭によって、普及し、課題となっている。
クローズドモデルの場合、トレーニングデータはトレードシークレットになり、オープンモデルであっても汚染を検出するのは簡単ではない。
1)公開するテストデータを公開鍵で暗号化し,デリバティブ配信を許可する,(2)クローズドAPI保持者からの要求トレーニング排他的コントロールを許可する,(2)評価を拒否してテストデータを保護する,(3)インターネット上のソリューションで表示されるデータを避け,インターネット由来のWebページコンテキストを解放する,という3つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-17T12:23:38Z) - Poisoning Web-Scale Training Datasets is Practical [73.34964403079775]
モデルの性能に悪意のある事例を意図的に導入する2つの新しいデータセット中毒攻撃を導入する。
最初の攻撃、スプリットビュー中毒は、インターネットコンテンツの不変性を利用して、データセットアノテータの初期ビューが、その後のクライアントがダウンロードしたビューとは異なることを保証します。
第2の攻撃、フロントラン中毒は、クラウドソースされたコンテンツを定期的にスナップショットするWebスケールデータセットをターゲットにしている。
論文 参考訳(メタデータ) (2023-02-20T18:30:54Z) - UAVCAN Dataset Description [2.37499051649312]
UAVCANプロトコルを用いて無人車両からの攻撃データを収集し,技術文書の公開と記述を行った。
PX4を使ってドローンでテストベッドが作られ、合計3回の攻撃、洪水、ファジィ、リプレイが行われた。
攻撃データは、ドローンのセキュリティ脅威問題を解決するために、異常検出などの技術開発に役立つと期待している。
論文 参考訳(メタデータ) (2022-12-19T06:41:03Z) - Dataset: Large-scale Urban IoT Activity Data for DDoS Attack Emulation [7.219077740523682]
大規模なIoTデバイスネットワークは、ハイジャックされる可能性があり、ボットネットとして使用され、分散サービス拒否(DDoS)攻撃を起動する。
本稿では,4060ノードの都市IoTデプロイメントから得られたデータセットについて述べる。
また、攻撃されたノード数や攻撃期間などのパラメータに基づいて、データセットにアタックアクティビティを注入する合成DDoSアタックジェネレータも提供する。
論文 参考訳(メタデータ) (2021-10-05T06:34:58Z) - Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks
Trained from Scratch [99.90716010490625]
バックドア攻撃者は、トレーニングデータを改ざんして、そのデータに基づいてトレーニングされたモデルに脆弱性を埋め込む。
この脆弱性は、モデル入力に"トリガー"を配置することで、推論時にアクティベートされる。
我々は,工芸過程において,勾配マッチング,データ選択,ターゲットモデル再トレーニングを利用した新しい隠れトリガ攻撃,Sleeper Agentを開発した。
論文 参考訳(メタデータ) (2021-06-16T17:09:55Z) - Time-Based CAN Intrusion Detection Benchmark [0.0]
車両制御システムはメッセージインジェクション攻撃に対して脆弱である。
タイムベースの侵入検知システム (IDS) が提案されている。
新たに公開されたROADデータセットに対して4つの時間ベースのIDSをベンチマークする。
また,軽量ハードウェアを用いたアフターマーケット用プラグイン検出器を開発した。
論文 参考訳(メタデータ) (2021-01-14T18:33:19Z) - DR-SPAAM: A Spatial-Attention and Auto-regressive Model for Person
Detection in 2D Range Data [81.06749792332641]
本研究では,異なるタイミングで得られたスキャンを組み合わせ,代替戦略を用いた人物検出ネットワークを提案する。
DR-SPAAMは、バックボーンネットワークから中間機能をテンプレートとして保持し、新しいスキャンが利用可能になったときにテンプレートをリカレントに更新する。
DROWデータセットでは,提案手法は既存の最先端技術よりも約4倍高速である。
論文 参考訳(メタデータ) (2020-04-29T11:01:44Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
本稿では,LiDAR検出器を騙すために,汎用な3次元対向物体を生成する手法を提案する。
特に,LiDAR検出器から車両を完全に隠蔽するために,車両の屋根上に対向物体を配置し,その成功率は80%であることを示した。
これは、限られたトレーニングデータから見知らぬ条件下での、より安全な自動運転への一歩だ。
論文 参考訳(メタデータ) (2020-04-01T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。