MABFuzz: Multi-Armed Bandit Algorithms for Fuzzing Processors
- URL: http://arxiv.org/abs/2311.14594v1
- Date: Fri, 24 Nov 2023 16:32:43 GMT
- Title: MABFuzz: Multi-Armed Bandit Algorithms for Fuzzing Processors
- Authors: Vasudev Gohil, Rahul Kande, Chen Chen, Ahmad-Reza Sadeghi, Jeyavijayan Rajendran,
- Abstract summary: We develop a novel dynamic and adaptive decision-making framework, MABFuzz, that uses multi-armed bandit (MAB) algorithms to fuzz processors.
MABFuzz is agnostic to, and hence, applicable to, any existing hardware fuzzer.
We integrate three widely used MAB algorithms in a state-of-the-art hardware fuzzer and evaluate them on three popular RISC-V-based processors.
- Score: 19.60227174252432
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As the complexities of processors keep increasing, the task of effectively verifying their integrity and security becomes ever more daunting. The intricate web of instructions, microarchitectural features, and interdependencies woven into modern processors pose a formidable challenge for even the most diligent verification and security engineers. To tackle this growing concern, recently, researchers have developed fuzzing techniques explicitly tailored for hardware processors. However, a prevailing issue with these hardware fuzzers is their heavy reliance on static strategies to make decisions in their algorithms. To address this problem, we develop a novel dynamic and adaptive decision-making framework, MABFuzz, that uses multi-armed bandit (MAB) algorithms to fuzz processors. MABFuzz is agnostic to, and hence, applicable to, any existing hardware fuzzer. In the process of designing MABFuzz, we encounter challenges related to the compatibility of MAB algorithms with fuzzers and maximizing their efficacy for fuzzing. We overcome these challenges by modifying the fuzzing process and tailoring MAB algorithms to accommodate special requirements for hardware fuzzing. We integrate three widely used MAB algorithms in a state-of-the-art hardware fuzzer and evaluate them on three popular RISC-V-based processors. Experimental results demonstrate the ability of MABFuzz to cover a broader spectrum of processors' intricate landscapes and doing so with remarkable efficiency. In particular, MABFuzz achieves up to 308x speedup in detecting vulnerabilities and up to 5x speedup in achieving coverage compared to a state-of-the-art technique.
Related papers
- HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - FuzzWiz -- Fuzzing Framework for Efficient Hardware Coverage [2.1626093085892144]
We create an automated hardware fuzzing framework called FuzzWiz.
It includes parsing the RTL design module, converting it into C/C++ models, creating generic testbench with assertions, linking, and fuzzing.
Our benchmarking results show that we could achieve around 90% of the coverage 10 times faster than traditional simulation regression based approach.
arXiv Detail & Related papers (2024-10-23T10:06:08Z) - MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling optimization challenges.
The requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices.
We introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians.
arXiv Detail & Related papers (2024-09-27T12:28:18Z) - Beyond Random Inputs: A Novel ML-Based Hardware Fuzzing [16.22481369547266]
Hardware fuzzing is an effective approach to exploring and detecting security vulnerabilities in large-scale designs like modern processors.
We propose a novel ML-based hardware fuzzer, ChatFuzz, to address this challenge.
ChatFuzz achieves condition coverage rate of 75% in just 52 minutes compared to a state-of-the-art fuzzer.
arXiv Detail & Related papers (2024-04-10T09:28:54Z) - The Emergence of Hardware Fuzzing: A Critical Review of its Significance [0.4943822978887544]
Hardware fuzzing, inspired by software testing methodologies, has gained prominence for its efficacy in identifying bugs within complex hardware designs.
Despite the introduction of various hardware fuzzing techniques, obstacles such as inefficient conversion of hardware modules into software models impede their effectiveness.
This work examines the reliability of existing hardware fuzzing techniques in identifying vulnerabilities and identifies research gaps for future advancements in design verification techniques.
arXiv Detail & Related papers (2024-03-19T15:12:11Z) - WhisperFuzz: White-Box Fuzzing for Detecting and Locating Timing Vulnerabilities in Processors [18.926324727139377]
Researchers have adapted black-box or grey-box fuzzing to detect timing vulnerabilities in processors.
We present WhisperFuzz--the first white-box fuzzer with static analysis.
We detect and locate timing vulnerabilities in processors and evaluate the coverage of microarchitectural timing behaviors.
arXiv Detail & Related papers (2024-02-06T04:47:58Z) - Deep Learning Assisted Multiuser MIMO Load Modulated Systems for
Enhanced Downlink mmWave Communications [68.96633803796003]
This paper is focused on multiuser load modulation arrays (MU-LMAs) which are attractive due to their low system complexity and reduced cost for millimeter wave (mmWave) multi-input multi-output (MIMO) systems.
The existing precoding algorithm for downlink MU-LMA relies on a sub-array structured (SAS) transmitter which may suffer from decreased degrees of freedom and complex system configuration.
In this paper, we conceive an MU-LMA system employing a full-array structured (FAS) transmitter and propose two algorithms accordingly.
arXiv Detail & Related papers (2023-11-08T08:54:56Z) - Vulnerability Detection Through an Adversarial Fuzzing Algorithm [2.074079789045646]
This project aims to increase the efficiency of existing fuzzers by allowing fuzzers to explore more paths and find more bugs in shorter amounts of time.
adversarial methods are built on top of current evolutionary algorithms to generate test cases for further and more efficient fuzzing.
arXiv Detail & Related papers (2023-07-21T21:46:28Z) - Deep-Unfolding for Next-Generation Transceivers [49.338084953253755]
The stringent performance requirements of future wireless networks are spurring studies on defining the next-generation multiple-input multiple-output (MIMO) transceivers.
For the design of advanced transceivers in wireless communications, optimization approaches often leading to iterative algorithms have achieved great success.
Deep learning, approximating the iterative algorithms with deep neural networks (DNNs) can significantly reduce the computational time.
Deep-unfolding has emerged which incorporates the benefits of both deep learning and iterative algorithms, by unfolding the iterative algorithm into a layer-wise structure.
arXiv Detail & Related papers (2023-05-15T02:13:41Z) - GD-MAE: Generative Decoder for MAE Pre-training on LiDAR Point Clouds [72.60362979456035]
Masked Autoencoders (MAE) are challenging to explore in large-scale 3D point clouds.
We propose a textbfGenerative textbfDecoder for MAE (GD-MAE) to automatically merges the surrounding context.
We demonstrate the efficacy of the proposed method on several large-scale benchmarks: KITTI, and ONCE.
arXiv Detail & Related papers (2022-12-06T14:32:55Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.