FuzzWiz -- Fuzzing Framework for Efficient Hardware Coverage
- URL: http://arxiv.org/abs/2410.17732v1
- Date: Wed, 23 Oct 2024 10:06:08 GMT
- Title: FuzzWiz -- Fuzzing Framework for Efficient Hardware Coverage
- Authors: Deepak Narayan Gadde, Aman Kumar, Djones Lettnin, Sebastian Simon,
- Abstract summary: We create an automated hardware fuzzing framework called FuzzWiz.
It includes parsing the RTL design module, converting it into C/C++ models, creating generic testbench with assertions, linking, and fuzzing.
Our benchmarking results show that we could achieve around 90% of the coverage 10 times faster than traditional simulation regression based approach.
- Score: 2.1626093085892144
- License:
- Abstract: Ever-increasing design complexity of System-on-Chips (SoCs) led to significant verification challenges. Unlike software, bugs in hardware design are vigorous and eternal i.e., once the hardware is fabricated, it cannot be repaired with any patch. Despite being one of the powerful techniques used in verification, the dynamic random approach cannot give confidence to complex Register Transfer Leve (RTL) designs during the pre-silicon design phase. In particular, achieving coverage targets and exposing bugs is a complicated task with random simulations. In this paper, we leverage an existing testing solution available in the software world known as fuzzing and apply it to hardware verification in order to achieve coverage targets in quick time. We created an automated hardware fuzzing framework FuzzWiz using metamodeling and Python to achieve coverage goals faster. It includes parsing the RTL design module, converting it into C/C++ models, creating generic testbench with assertions, fuzzer-specific compilation, linking, and fuzzing. Furthermore, it is configurable and provides the debug flow if any crash is detected during the fuzzing process. The proposed framework is applied on four IP blocks from Google's OpenTitan chip with various fuzzing engines to show its scalability and compatibility. Our benchmarking results show that we could achieve around 90% of the coverage 10 times faster than traditional simulation regression based approach.
Related papers
- FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
We propose to adopt fine-tuned large language models (FuzzCoder) to learn patterns in the input files from successful attacks.
FuzzCoder can predict mutation locations and strategies locations in input files to trigger abnormal behaviors of the program.
arXiv Detail & Related papers (2024-09-03T14:40:31Z) - KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution [59.20933707301566]
Large Language Models (LLMs) are consistently improving at increasingly realistic software engineering (SE) tasks.
In real-world software stacks, significant SE effort is spent developing foundational system software like the Linux kernel.
To evaluate if ML models are useful while developing such large-scale systems-level software, we introduce kGym and kBench.
arXiv Detail & Related papers (2024-07-02T21:44:22Z) - Beyond Random Inputs: A Novel ML-Based Hardware Fuzzing [16.22481369547266]
Hardware fuzzing is an effective approach to exploring and detecting security vulnerabilities in large-scale designs like modern processors.
We propose a novel ML-based hardware fuzzer, ChatFuzz, to address this challenge.
ChatFuzz achieves condition coverage rate of 75% in just 52 minutes compared to a state-of-the-art fuzzer.
arXiv Detail & Related papers (2024-04-10T09:28:54Z) - JustSTART: How to Find an RSA Authentication Bypass on Xilinx UltraScale(+) with Fuzzing [12.338137154105034]
We investigate fuzzing for 7-Series and UltraScale(+) FPGA configuration engines.
Our goal is to examine the effectiveness of fuzzing to analyze and document the inner workings of FPGA configuration engines.
arXiv Detail & Related papers (2024-02-15T10:03:35Z) - MABFuzz: Multi-Armed Bandit Algorithms for Fuzzing Processors [19.60227174252432]
We develop a novel dynamic and adaptive decision-making framework, MABFuzz, that uses multi-armed bandit (MAB) algorithms to fuzz processors.
MABFuzz is agnostic to, and hence, applicable to, any existing hardware fuzzer.
We integrate three widely used MAB algorithms in a state-of-the-art hardware fuzzer and evaluate them on three popular RISC-V-based processors.
arXiv Detail & Related papers (2023-11-24T16:32:43Z) - Fuzzing with Quantitative and Adaptive Hot-Bytes Identification [6.442499249981947]
American fuzzy lop, a leading fuzzing tool, has demonstrated its powerful bug finding ability through a vast number of reported CVEs.
We propose an approach called toolwhich is designed based on the following principles.
Our evaluation results on 10 real-world programs and LAVA-M dataset show that toolachieves sustained increases in branch coverage and discovers more bugs than other fuzzers.
arXiv Detail & Related papers (2023-07-05T13:41:35Z) - DiffStack: A Differentiable and Modular Control Stack for Autonomous
Vehicles [75.43355868143209]
We present DiffStack, a differentiable and modular stack for prediction, planning, and control.
Our results on the nuScenes dataset indicate that end-to-end training with DiffStack yields substantial improvements in open-loop and closed-loop planning metrics.
arXiv Detail & Related papers (2022-12-13T09:05:21Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - FCOS: A simple and strong anchor-free object detector [111.87691210818194]
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion.
Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes.
In contrast, our proposed detector FCOS is anchor box free, as well as proposal free.
arXiv Detail & Related papers (2020-06-14T01:03:39Z) - Latency-Aware Differentiable Neural Architecture Search [113.35689580508343]
Differentiable neural architecture search methods became popular in recent years, mainly due to their low search costs and flexibility in designing the search space.
However, these methods suffer the difficulty in optimizing network, so that the searched network is often unfriendly to hardware.
This paper deals with this problem by adding a differentiable latency loss term into optimization, so that the search process can tradeoff between accuracy and latency with a balancing coefficient.
arXiv Detail & Related papers (2020-01-17T15:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.