PointOBB: Learning Oriented Object Detection via Single Point
Supervision
- URL: http://arxiv.org/abs/2311.14757v1
- Date: Thu, 23 Nov 2023 15:51:50 GMT
- Title: PointOBB: Learning Oriented Object Detection via Single Point
Supervision
- Authors: Junwei Luo, Xue Yang, Yi Yu, Qingyun Li, Junchi Yan, Yansheng Li
- Abstract summary: This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection.
PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view.
Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance.
- Score: 55.88982271340328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single point-supervised object detection is gaining attention due to its
cost-effectiveness. However, existing approaches focus on generating horizontal
bounding boxes (HBBs) while ignoring oriented bounding boxes (OBBs) commonly
used for objects in aerial images. This paper proposes PointOBB, the first
single Point-based OBB generation method, for oriented object detection.
PointOBB operates through the collaborative utilization of three distinctive
views: an original view, a resized view, and a rotated/flipped (rot/flp) view.
Upon the original view, we leverage the resized and rot/flp views to build a
scale augmentation module and an angle acquisition module, respectively. In the
former module, a Scale-Sensitive Consistency (SSC) loss is designed to enhance
the deep network's ability to perceive the object scale. For accurate object
angle predictions, the latter module incorporates self-supervised learning to
predict angles, which is associated with a scale-guided Dense-to-Sparse (DS)
matching strategy for aggregating dense angles corresponding to sparse objects.
The resized and rot/flp views are switched using a progressive multi-view
switching strategy during training to achieve coupled optimization of scale and
angle. Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate
that PointOBB achieves promising performance, and significantly outperforms
potential point-supervised baselines.
Related papers
- Point2RBox: Combine Knowledge from Synthetic Visual Patterns for End-to-end Oriented Object Detection with Single Point Supervision [81.60564776995682]
We present Point2RBox, an end-to-end solution for point-supervised object detection.
Our method uses a lightweight paradigm, yet it achieves a competitive performance among point-supervised alternatives.
In particular, our method uses a lightweight paradigm, yet it achieves a competitive performance among point-supervised alternatives.
arXiv Detail & Related papers (2023-11-23T15:57:41Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - ARS-DETR: Aspect Ratio-Sensitive Detection Transformer for Aerial Oriented Object Detection [55.291579862817656]
Existing oriented object detection methods commonly use metric AP$_50$ to measure the performance of the model.
We argue that AP$_50$ is inherently unsuitable for oriented object detection due to its large tolerance in angle deviation.
We propose an Aspect Ratio Sensitive Oriented Object Detector with Transformer, termed ARS-DETR, which exhibits a competitive performance.
arXiv Detail & Related papers (2023-03-09T02:20:56Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - Anchor Retouching via Model Interaction for Robust Object Detection in
Aerial Images [15.404024559652534]
We present an effective Dynamic Enhancement Anchor (DEA) network to construct a novel training sample generator.
Our method achieves state-of-the-art performance in accuracy with moderate inference speed and computational overhead for training.
arXiv Detail & Related papers (2021-12-13T14:37:20Z) - DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection [16.21161769128316]
We present DAFNe: A one-stage Anchor-Free deep Network for oriented object detection.
As an anchor-free model, DAFNe reduces the prediction complexity by refraining from employing bounding box anchors.
We introduce an orientation-aware generalization of the center-ness function for arbitrarily oriented bounding boxes to down-weight low-quality predictions.
arXiv Detail & Related papers (2021-09-13T17:37:20Z) - Oriented RepPoints for Aerial Object Detection [10.818838437018682]
In this paper, we propose a novel approach to aerial object detection, named Oriented RepPoints.
Specifically, we suggest to employ a set of adaptive points to capture the geometric and spatial information of the arbitrary-oriented objects.
To facilitate the supervised learning, the oriented conversion function is proposed to explicitly map the adaptive point set into an oriented bounding box.
arXiv Detail & Related papers (2021-05-24T06:18:23Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
We argue that the image features extracted at a central point contain limited information for predicting distant keypoints or bounding box boundaries.
To facilitate inference, we propose to instead perform regression from a set of points placed at more advantageous positions.
We apply this proposed framework, called Point-Set Anchors, to object detection, instance segmentation, and human pose estimation.
arXiv Detail & Related papers (2020-07-06T15:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.